
Formally Verified Low-Level C Implementation of Crit-Bit Trees
in a Live Verification Tool

Viktor Fukala

MIT, USA and D-INFK, ETH Zurich, Switzerland

This extended abstract was accepted into the Student Research Compe-
tition at PLDI’24. This version has been updated according to reviewers’
feedback.

1 ABSTRACT
Using a recent live verification tool [7], we implement a crit-bit tree

in C syntax and verify the implementation against the Bedrock2

C-like semantics. This is the first formally verified implementation

of crit-bit trees, the first implementation of an efficient key-value

store in Bedrock2, and one of only a limited number of formally

verified, low-level, imperative implementations of a map data struc-

ture in general. Our work is the first significant case study of [7].

In our benchmarks for lookup, insertion, and deletion, our crit-bit

tree implementation was at most 22 % slower than std::map in

libstdc++.

2 PROBLEM AND MOTIVATION
A crit-bit tree [1, 5] is a little-known tree data structure that sup-

ports efficient execution of ordered dictionary operations (lookup,

insert, erase, ordered predecessor/successor lookup). While pro-

viding functionality similar to the more popular alternatives like

AVL or red-black trees, it requires no rebalancing mechanism. In

this project, we implemented a crit-bit tree in C and formally ve-

rified our implementation with respect to the C-like semantics of

Bedrock2 [6]. For both implementation and verification, we used a

prototype of a live verification tool [7] that is being developed as

part of the Bedrock2 ecosystem.

We contribute

• the first efficient implementation of a key-value store ready

for use in other Bedrock2 projects,

• insights into the verification of crit-bit trees in general,

• one of a limited number of verified, imperative, low-level

implementations of data structures with map functionality

• the first significant case study on the usability of the new

live verification tool.

3 BACKGROUND AND RELATEDWORK
There are many existing formally verified implementations of tree

data structures in functional languages, e.g. [2, 3]. These tend to be

simpler than imperative implementations due to the similarity of the

proof assistant and the implementation languages. Our low-level,

imperative implementation has the advantages of: interoperability

with other low-level code, more complete correctness guarantees

in practice when the lower SW/HW layers are also verified (as in

[6]), and the potential for better performance.

Some projects proceed by first verifying a functional implemen-

tation and then refining it to an imperative one, e.g. [11]. In contrast,

we decided to verify our imperative implementation directly and

we tend to believe that it led to a lower overall proof burden.

In automated program verifiers [4], verification failures are often

difficult to debug because the verifier doesn’t show an intuitive

representation of the proof state from which it couldn’t progress.

Further, program implementation and its proof are usually sepa-

rated making editing one or the other cumbersome. The live verifi-

cation tool addresses both these issues and our project is the first

significant work to use the tool’s program verification approach.

3.1 Crit-Bit Trees
In our crit-bit trees (CBTs), both the keys and values are from the set

of all bitstrings of a fixed bitwidth 𝐵𝑊 ,K = V = {false, true}𝐵𝑊 .

A non-empty CBT is a binary tree. In contrast to binary search

trees, only the leaf nodes store key-value pairs. Each of the other,

non-leaf, nodes stores an index 𝑖 ∈ {0, . . . , 𝐵𝑊 − 1} of a critical bit
(hence crit-bit trees). This signifies that in the subtree below such a

node, the bitstrings of some keys have false at index 𝑖 (those are
required to be in the left subtree) while others have true (those

must be right). The only other invariant is that a node can only

store a critical bit index that is greater than that of its parent.

Efficiency-wise, CBTs are an improvement over traditional tries

as they don’t have an internal node for all bits but only for the

critical ones (when both false and true are possible). They are

also quite similar to, yet simpler than, PATRICIA tries [10].

A good overview of CBTs can be found in [1, 5] and similar

data structures are also described in [8, 12]. Noticeably, CBTs don’t

require any restructuring (rebalancing) operations which would

both lead to variations in running time and complicate our proofs.

All operations (lookup, insert, delete, find next with respect to

lexicographic order of bitstrings) can be implemented with running

time in O(𝐵𝑊) = O(log|K |); but in practice, the number of critical

bits can be much lower than 𝐵𝑊 and execution therefore faster.

3.2 Bedrock2 and Live Verification Tool
Using Coq, the Bedrock2 project develops new methods for verify-

ing low-level systems applications. It includes the formalization and

verification of an entire SW/HW stack from the hardware design

of a RISC-V processor and the semantics of its instruction set to a

corresponding compiler for a programming language with C-like

semantics. As part of Bedrock2, the live verification tool aims to

significantly improve on the end of writing the top-level programs.

When implementing a program, after each statement the user en-

ters, the tool displays the current symbolic state and any potential

proof obligations that couldn’t be discharged automatically. The

user can then prove these manually inline without abandoning

the unfinished implementation. Thanks to a set of Coq notations,

individual statements of the program are written in familiar C syn-

tax such that the final Coq file can even be directly compiled by a

production C compiler like GCC.

1

4 APPROACH AND UNIQUENESS
4.1 Prefixes of Keys
Much of our proofs relies on efficient reasoning about prefixes

of keys. In a valid CBT, each node, explicitly storing a critical bit

index 𝑖 ∈ {0, . . . , 𝐵𝑊 − 1}, also has an implicitly associated pre-

fix of length 𝑖 , which is the longest common prefix of all keys in

its subtree. We observed that it was practical to define prefixes

as a standalone concept to streamline our proofs. We denote all

the potential prefixes P = {false, true}≤𝐵𝑊 . P exhibits a lot

of useful structure: there is the canonical injection 𝜄 : K → P,

a relation pfx_le ⊆ P × P with 𝑝1 pfx_le 𝑝2 ⇐⇒ “𝑝1
is a prefix of 𝑝2,” an operation pfx_meet : P × P → P with

pfx_meet(𝑝1, 𝑝2) equal to the longest common prefix of 𝑝1 and

𝑝2, and a function pfx_len : P → N for the length of a pre-

fix. These definitions are useful for expressing assertions in our

CBT proofs (e.g., pfx_len(pfx_meet(𝜄 (𝑘1), 𝜄 (𝑘2))) is the critical

bit index of two keys) and at the same time, they relate to fami-

liar mathematical structures ((P, pfx_le) is a partially-ordered set,
(P, pfx_le, pfx_meet) is a meet-semilattice). Finally, for a map𝑀 ,

∅ ≠ 𝑀 ⊆ K ×V , we defined pfx_mmeet(𝑀) as the meet of all 𝜄 (𝑘)
for (𝑘, 𝑣) ∈ 𝑀 (order does not matter because pfx_meet is asso-

ciative and commutative). With this, pfx_mmeet(𝑀) is the longest
common prefix of all keys in𝑀 .

By using these definitions and by exploiting the general proper-

ties of a semilattice, we can often avoid the low-level manipulation

of prefix representations in the correctness proofs of our CBT func-

tions. The abstract prefix definitions make it easier (both in manual

proofs and in automated proof scripts) to focus on the crucial infor-

mation and to understand why specific assertions do (not) hold.

4.2 CBT Predicate
Central to the verification is the predicate which asserts that a

pointer points to a valid CBT representing a given map 𝑐 (𝑐 for

content). Unmodified, we show this predicate for non-empty CBTs:

Fixpoint cbt' (tree: tree_skeleton)
(c: word_map) (a: word): mem -> Prop :=
match tree with
| Leaf => EX k v,

<{ * emp (a <> /[0])
* freeable ltac:(wsize3) a
* <{ + uintptr /[ltac:(bw)]

+ uintptr k
+ uintptr v }> a

* emp (c = map.singleton k v) }>
| Node treeL treeR => EX (aL: word) (aR: word),

<{ * emp (a <> /[0])
* freeable ltac:(wsize3) a
* <{ + uintptr /[pfx_len (pfx_mmeet c)]

+ uintptr aL
+ uintptr aR }> a

* cbt' treeL (half_subcontent c false) aL
* cbt' treeR (half_subcontent c true) aR }>

end.

Here,<{ * _ ... * _ }> is the separating conjunction of several
memory predicates, <{ + _ ... + _ }> combines predicates with

contiguous memory footprints of known sizes into a predicate that

asserts that the constituents appear at a particular address one after

the other contiguously in memory.

5 RESULTS
Statistics of our verified implementation:

1

total LOC LOC in C # of C funcs verification time

5495 356 23 8 min. 40 s

Out of the 23 C functions, 14 are internal helper functions and 9

are meant to be exposed. Those are cbt_init, cbt_lookup,
cbt_insert, cbt_delete, cbt_get_min, cbt_get_max,
cbt_next_ge, cbt_next_gt, and page_from_cbt. get_min,
get_max, and next_* return a key-value pair with a particular

property related to the ordering of the keys when interpreted as

unsigned integers: get_min / get_max return the key-value pair

with the min. / max. key in the CBT; next_ge / next_gt return the

pair with the smallest key greater equal / greater than a specific key

given as argument (this key need not be in the CBT) and they can

be used to iterate over ranges of entries in a CBT. page_from_cbt
demonstrates the iterator capabilities: given arguments 𝑛 and 𝑘 , it

reads the next 𝑛 key-value pairs at or after key 𝑘 from a CBT into

an array.

Apart from abstracting away the representation of prefixes, an-

other advantage of our prefix formalization from 4.1 is that (e.g., in

the CBT predicate 4.2) we can express a node’s prefix explicitly as

pfx_mmeet c and can avoid assertions with existentially quantified

prefixes, which we used to have in our proofs initially. It was gene-

rally easier to prove a fully instantiated assertion about a property

of pfx_mmeet than an assertion where we first had to find the right

prefix to instantiate an existential quantifier with.

5.1 Implementation Performance
We insert 𝑁 = 2

20
key-value pairs with pseudorandom keys (∈

[0, 𝑁)) into an empty container (insert). Then we perform either

an in-order iteration over the entire container (iter), or a lookup
(lookup) or deletion (delete) of another 𝑁 pseudorandom keys.

2

insert iter lookup delete

CBT 307 ms 90 ms 316 ms 254 ms

std::map (red-black tree) 252 ms 44 ms 295 ms 288 ms

std::unordered_map 50 ms - 32 ms 33 ms

We compare with std::map because that is the go-to standard

library alternative that provies the functionality of our CBT. For

lookup, insertion, and deletion, we measured our implementation to

be no more than 22 % slower than std::map. For in-order iteration,
our CBT is around two time slower than std::map, which we

attribute to our unoptimized implementation of CBT iteration.

1
Code accessible at https://github.com/vfukala/bedrock2/tree/iterators.

2
Using g++ version 13.2.0 with -O2 on Intel Core i9-12900H. For a fairer comparison,

the results we show are from running with the mimalloc memory allocator [9], which,

compared to the standard memory allocator, reduced the execution times especially

for std::map.

2

https://github.com/vfukala/bedrock2/tree/iterators

6 ACKNOWLEDGMENTS
I would like to thank Samuel Gruetter, Adam Chlipala, and MIT

UROP for their support, advice, and funding.

REFERENCES
[1] Adam Langley. Crit-bit trees. https://www.imperialviolet.org/binary/critbit.pdf.

[2] Appel, A. W. Efficient verified red-black trees. https://www.cs.princeton.edu/

~appel/papers/redblack.pdf.

[3] Appel, A. W., and Leroy, X. Efficient extensional binary tries. In Journal of
Automated Reasoning (2023).

[4] Chlipala, A. Mostly-automated verification of low-level programs in computa-

tional separation logic. In Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation (New York, NY, USA, 2011),

PLDI ’11, Association for Computing Machinery, p. 234–245.

[5] Daniel J. Bernstein. https://cr.yp.to/critbit.html.

[6] Erbsen, A., Gruetter, S., Choi, J., Wood, C., and Chlipala, A. Integration

verification across software and hardware for a simple embedded system. In

Proceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (New York, NY, USA, 2021), PLDI 2021,

Association for Computing Machinery, p. 604–619.

[7] Gruetter, S., Fukala, V., and Chlipala, A. Live verification in an interactive

proof assistant. Proc. ACM Program. Lang. 8, PLDI (jun 2024).

[8] Gwehenberger, G. Use of a binary tree structure for processing files. Elektron.
Rechenanlagen 10, 5 (1968), 223–226.

[9] mimalloc contributors. https://github.com/microsoft/mimalloc.

[10] Morrison, D. R. Patricia—practical algorithm to retrieve information coded in

alphanumeric. J. ACM 15, 4 (oct 1968), 514–534.
[11] Mündler, N., and Nipkow, T. A verified implementation of b+-trees in is-

abelle/hol. In Theoretical Aspects of Computing – ICTAC 2022 (Cham, 2022),

Springer International Publishing, pp. 324–341.

[12] Sklower, K. A tree-based packet routing table for berkeley unix. In USENIX
Winter (1991).

3

https://www.imperialviolet.org/binary/critbit.pdf
https://www.cs.princeton.edu/~appel/papers/redblack.pdf
https://www.cs.princeton.edu/~appel/papers/redblack.pdf
https://cr.yp.to/critbit.html
https://github.com/microsoft/mimalloc

	1 Abstract
	2 Problem and Motivation
	3 Background and Related Work
	3.1 Crit-Bit Trees
	3.2 Bedrock2 and Live Verification Tool

	4 Approach and Uniqueness
	4.1 Prefixes of Keys
	4.2 CBT Predicate

	5 Results
	5.1 Implementation Performance

	6 Acknowledgments
	References

