Project Report:
Improving Leon’s Termination Checker

Samuel Gritter

5 June 2015

Introduction

When writing recursive functions, it’s a common mistake to forget about base cases, and to ac-
cidentally write non-terminating functions. And if one adds a postcondition, Leon will accept it,
because the verification assumes that all functions terminate. For example, the following function
passes verification:

def fib(n: BiglInt): BigInt = {
fib(n-1) + fib(n-2)
} ensuring {res => res == (5*%n + 1)*x(5xn - 1)}

There’s a termination checker in Leon [1], but unfortunately, it doesn’t give any answer for
the above example. It also has some other shortcomings, and was never tested on a bigger set of
tests, so that’s why it’s disabled by default. The goal of this project is to improve the termination
checker and its test coverage, so that it can be enabled by default.

The rest of this report describes the improvements made in this project, and it contains one
section per feature.

1 Detecting non-termination using a call graph
under-approximation

Leon uses call graphs in many places, but it always uses over-approximations of the “true” call
graph, i.e., whenever the body of a function f; contains a call to a function fs, a “call edge” from
f1 to fy is added to the graph. In order to prove non-termination, such a graph is not (directly)
useful. But if we have an under-approximation of the call-graph, i.e., an edge from function f; to
function f, is added only if we are sure that every execution of f; will call f5, we get a simple way
of detecting (some) non-terminating functions by simply checking if this graph contains a cycle. If
we find such a cycle, we know that all functions on the cycle are non-terminating for all inputs.
This is implemented in the newly added SelfCallsProcessor, which performs a depth first
search in the call graph under-approximation. It’s not necessary to construct the graph explictly,

Page 1 of 7

Improving Leon’s Termination Checker Samuel Griitter

because in order to know the outgoing edges of a function, we can simply look at its implementation
on the fly while doing the depth first search.

2 Abstracting over the well-founded order used by the
Relation Processor

The Relation Processor (described in section 3.3 of [1]) proves termination of functions by checking
that all recursive sub-calls are decreasing !, i.e. if a function’s argument tuple is @, it checks for
all recursive sub-calls with argument tuple @, that as < @;.

The < relation is defined as Gy < @) <= size(as) < size(a), and size is a function mapping
Leon expressions to N (defined in section 2.1 of this report).

However, the strategy used by the Relation Processor also works for different definitions of the
< relation. All we need to ensure is that < is a well-founded order, i.e. that there are no infinite
chains a; = aq > as =

With very little refactoring, it was possible to make the Relation Processor abstract over the
definition of <, so that it can be used with different implementations of <. Each of the following
subsections describes one such implementation.

2.1 Structural size of the argument tuples

The termination checker developed in [1] uses the notion of “structural size” of an expression. It’s
defined as follows:

Zi]\; size(z;) if x : Tupley
size(r) =9 1+ Zf\il size(x. field;) if x: ADTy
0 otherwise

It can be used to define a < relation as follows:

Gy <) <= size(aq) < size(ay)

Originally, the termination checker only used this definition of <.

The testing (section 4) showed that in many cases with Biglnt arguments, the other processors
could not prove termination, and that it would be useful to give the Relation Processor a means
of reasoning about integers. This can be achieved by modifying the size function as follows:

Zfll size(z;) it x : Tupley

size(a) = 4 1 F SoiLy size(w. field;) if @ - ADTy
abs(x) if x: BigInt
0 otherwise

!To be more precise, this requirement can even be slightly relaxed by requiring only transitive decreasing, i.e.
that the size is preserved in the sub-call, but strictly decreases in the sub-sub-calls made by the sub-call.

Page 2 of 7

Improving Leon’s Termination Checker Samuel Griitter

It would have been even better to include also a case for bitvectors, but the size function has
to return a Biglnt, and the solvers don’t support conversion from bitvectors to Biglnt. Of course,
one could implement the conversion by hand, but the real challenge would be to give the solver the
hint that the conversion preserves all inequalities. Therefore, the approach described in section
2.3 was preferred.

2.2 Comparing function call arguments lexicographically by structural
size

Another possible definition of < is to compare function argument lists lexicographically, using the
size function defined in 2.1 to compare individual expressions in the argument lists. This was
implemented in LexicographicRelationComparator.

Note that in general, lexicographic orders over sequences of different length are not well-
founded: For instance, in the alphabetic ordering of lower-case strings, we have an infinite de-
creasing chain b > ab > aab > aaab >

However, in Leon, function argument lists are of finite length, and for each program, we can
statically find the maximum argument list length [,,.,, and be sure that during the termination
checking, no argument lists longer than /., will occur, and since the order defined by the size
function which is used to compare the entries of the argument lists is well-founded as well, the
lexicographic order we’re using here is well-founded.

2.3 Comparing bitvector arguments lexicographically by absolute value

A third definition of < focusses on bitvectors: Given two tuples of expressions, it first filters them
by the type of the expression, and only keeps the expressions of type Int32Type. Then, these
filtered tuples are compared lexicographically, using the absolute value of the individual entries.

Another possibility would be to compare the sum of all absolute values of bitvector arguments,
but this turned out to be useless, because in most cases, we cannot guard against overflows when
summing up the absolute values, so the solver cannot give us any proofs.

3 Verification and termination results in one run

By giving the options --verify and --termination together, we can now get the results of verifi-
cation and of the termination checker in just one run of Leon. The beginning of the pipeline, which
is the same for verification and termination (i.e. the parsing with scalac, the ExtractionPhase
and the PreprocessingPhase) are run only once, and the obtained program is then fed to both
the AnalysisPhase and the TerminationPhase.

This feature will hopefully make the use of the termination checker in Leon more popular,
because it removes the need for an extra call to get termination results.

Page 3 of 7

Improving Leon’s Termination Checker Samuel Griitter

4 More testing

In order to empirically test the robustness of the implementation, the TerminationRegression
test was extended so that it tests the termination checker not only on the regression suite written
for the termination checker, but also on the regression suite written for testing the verification
phase.

Without using any of the improvements made in this project, 6 out of the 68 files of the
verification regression suite contained functions for which termination could not be proven:

regression/verification/purescala/valid/Monads3.scala
regression/verification/purescala/valid/FlatMap.scala
regression/verification/purescala/valid/ParBalance.scala
regression/verification/purescala/valid/MergeSort.scala
regression/verification/purescala/valid/Nat.scala
regression/verification/purescala/valid/BitsTricks.scala

And among the tests added during this project, 3 files contained functions for which termination
could not be proven:

e regression/termination/valid/CountTowardsZero.scala
e regression/termination/looping/0ddEven.scala
e regression/termination/looping/WrongFibonacci.scala

Moreover, the leon library contained some methods for which termination could not be proven:
e library/collection/List.scala

The goal of this project was to make them all succeed. This was achieved on one hand by
implementing the features described in the previous sections, and on the other hand by slightly
rewriting some problematic functions in the test cases, so that they calculate the same result, but
that it’s more obvious why they terminate.

The following subsections describe for each of the above listed files why termination can now
be proven for them.

Since some files had to be modified, it’s best to look at them in the modified version at
https://github.com/samuelgruetter/leon/tree/abf519a395/src/test/resources/.

And in order to see the edits made to the files, it’s best to look at the commits of the pull
request at https://github.com/epfl-lara/leon/pull/115.

4.1 Monads3.scala and FlatMap.scala

Both of these files contain a lemma called associative lemma induct which does lexicographic
induction on its first three arguments (which all are lists). Thanks to the lexicographic argument
lists comparison described in section 2.2, they now succeed, without any modification of the test
files.

Page 4 of 7

https://github.com/samuelgruetter/leon/tree/a5f519a395/src/test/resources/
https://github.com/epfl-lara/leon/pull/115

Improving Leon’s Termination Checker Samuel Griitter

4.2 ParBalance.scala and MergeSort.scala

In ParBalance.scala, the problematic function is reverse reverse _equivalence: It proves that
reversing a list twice yields the original list. The lemma is recursively called on a reversed list,
and the termination checker does not recognize that the size of the argument (according to the
structural size function of section 2.1) is preserved by the reverse operation. So we have to edit
the reverse_reverse_equivalence function to include the size (number of elements, according to
the function definition in the Scala file) as an additional argument, which just serves as termination
witness and would be removed by any decent optimizer.

Now the lexicographic measure applies, because it suffices to show that the first argument
always decreases, and it doesn’t matter if we don’t know anything about the structural size of the
second argument.

In MergeSort.scala, the same problem happened with the weirdSort function, and it was
solved the same way.

4.3 Nat.scala

In Nat.scala, the int2Nat function converted integers to an ADT type Nat, but there was no
precondition to exclude negative arguments, so it would have looped for negative arguments. After
adding the precondition, termination could be proven, thanks to the abs change made to the size
function (section 2.1).

4.4 BitsTricks.scala

In BitTricks.scala, the turnOffRightmostOneRec and isRotationLeft functions, which used
recursion to loop through all 32 bits of a bitvector, could not be proven terminating, because they
counted from 0 up to 31. By modifying the functions so that they count from 31 down to 0, the
bitvector comparison described in section 2.3 could now kick in, and termination was proven.

4.5 CountTowardsZero.scala

This testcase contains a function accepting both positive and negative Biglnts, and counting down
towards zero, so the absolute value always decreases. Thanks to the modifications to the size
function described in section 2.1, it now succeeds.

4.6 0ddEven.scala and WrongFibonacci.scala

Both of these files miss a base-case in the recursive definition, so they count down to minus
infinity. The existing termination checker (the LoopProcessor, more precisely) could not prove
non-termination for these, because it only works for functions which call themselves with the same
arguments, but here, the argument always changes.

In this case, the SelfCallsProcessor kicks in and proves that these functions are non-
terminating for all inputs.

Page 5 of 7

Improving Leon’s Termination Checker Samuel Griitter

5 Web interface improvements

The web interface already displayed output of the termination checker, but not in a very user-
friendly way. It did not display counter-examples to termination, and it did not distinguish between
the “counter example found” case and the “no guarantee” case (both were just displayed as “no
guarantee”).

In the overview box, we now distinguish between four cases: “terminates”, “conditionally
terminates” (i.e. calls non-terminating functions), “loops”, and “no guarantee”.

Analysis Compiled v

Function Verif. Term.
fv v v
subst v v
eval] o
isValue v v
eval2 v (¥)

And clicking on the icon in the overview box opens a dialog with details, displaying the coun-
terexample or the called non-terminating functions (if any).

Page 6 of 7

Improving Leon’s Termination Checker Samuel Griitter

Termination Checker

Leon checks if the selected function terminates for all inputs.
NiEinaes]

This function terminates for all inputs.

Termination Checker

Leon checks if the selected function terminates for all inputs.

Calls nor=igrrrirziing juricions!

The function calls the following non-terminating function(s):

eval

Termination Checker

Leon checks if the selected function terminates for all inputs.
INen=erminatngy

The function does not terminate for the following call:

eval (App(Abs (0, App(Var(0), Var(0))), Abs(0, App(Var(0), Var(0)))))

References

(1) Nicolas Voirol: Modular and Extended Termination Prover (Semester project report). EPFL,
School of Computer and Communication Sciences, Spring 2013.

Page 7 of 7

	Detecting non-termination using a call graph under-approximation
	Abstracting over the well-founded order used by the Relation Processor
	Structural size of the argument tuples
	Comparing function call arguments lexicographically by structural size
	Comparing bitvector arguments lexicographically by absolute value

	Verification and termination results in one run
	More testing
	Monads3.scala and FlatMap.scala
	ParBalance.scala and MergeSort.scala
	Nat.scala
	BitsTricks.scala
	CountTowardsZero.scala
	OddEven.scala and WrongFibonacci.scala

	Web interface improvements

