
Integration Verification across Software and
Hardware for a Simple Embedded System

Andres Erbsen∗
Samuel Gruetter∗
Joonwon Choi
Clark Wood

Adam Chlipala
MIT CSAIL

USA

Abstract
The interfaces between layers of a system are susceptible
to bugs if developers of adjacent layers proceed under sub-
tly different assumptions. Formal verification of two layers
against the same formal model of the interface between them
can be used to shake out these bugs. Doing so for every in-
terface in the system can, in principle, yield unparalleled
assurance of the correctness and security of the system as a
whole. However, there have been remarkably few efforts that
carry out this exercise, and all of them have simplified the
task by restricting interactivity of the application, inventing
new simplified instruction sets, and using unrealistic input
and output mechanisms. We report on the first verification
of a realistic embedded system, with its application software,
device drivers, compiler, and RISC-V processor represented
inside the Coq proof assistant as one mathematical object,
with a machine-checked proof of functional correctness. A
key challenge is structuring the proof modularly, so that
further refinement of the components or expansion of the
system can proceed without revisiting the rest of the system.

CCS Concepts: • Software and its engineering → For-
mal software verification; • Hardware → Theorem
proving and SAT solving.

Keywords: Formal Verification, Hardware-Software In-
terface, Proof Assistants, Embedded Systems, RISC-V
Instruction-Set Family

∗equal contribution

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PLDI ’21, June 20–25, 2021, Virtual, Canada
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8391-2/21/06.
https://doi.org/10.1145/3453483.3454065

ACM Reference Format:
Andres Erbsen, Samuel Gruetter, Joonwon Choi, Clark Wood,
and Adam Chlipala. 2021. Integration Verification across Soft-
ware and Hardware for a Simple Embedded System. In Proceed-
ings of the 42nd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation (PLDI ’21), June
20–25, 2021, Virtual, Canada. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3453483.3454065

1 Introduction
We present the comprehensive and modular verification of
functional correctness of a newly realistic but still very sim-
ple embedded system, highlighting important challenges
that remain in scaling up the scope and realism of verifica-
tion and reducing the effort required. Our development of
an Ethernet-connected IoT lightbulb controller culminates
in a single Coq proof relating the network packets entering
our integrated system through memory-mapped I/O (MMIO)
to the action the controller takes by emitting MMIO writes,
ruling out any bugs or vulnerabilities that could be exploited
over the network. In particular, the proof spans a pipelined
processor implementation, the RISC-V instruction set, a com-
piler, a software-verification system, drivers, and application
code. We choose rather simple designs for the components
and mainly focus on integration verification, i.e. on ruling
out integration bugs that arise when two components (e.g.,
compiler and application code, or compiler and processor)
interpret the interface between them in independently rea-
sonable but subtly different ways.
We believe that verifying intercomponent interaction is

crucial for preventing the nastiest bugs across the stack, e.g.:
• A network interface card receiving a large frame overrun-
ning a statically allocated buffer in the driver (our initial
prototype had this bug)
• A C compiler deleting reasonable-looking code that calls
memcpy after determining that a little-known and unneces-
sary precondition of the function is violated [26]
• Code compiled for a userland environment failing inexpli-
cably in a kernel due to differences in stack discipline [14]
• Code written for AMD processors allowing for privilege
escalation attacks on Intel’s “compatible” processors due

https://doi.org/10.1145/3453483.3454065
https://doi.org/10.1145/3453483.3454065

PLDI ’21, June 20–25, 2021, Virtual, Canada Andres Erbsen, Samuel Gruetter, Joonwon Choi, Clark Wood, and Adam Chlipala

to a subtle difference in the behavior of an instruction orig-
inally defined by AMD, even though each implementation
technically matched its published specification [13]
We further insist on modular verification: it should be

possible tomodify and optimize each component individually
(within the flexibility allowed by its interfaces) and reprove it
without having to recheck and potentially update the proofs
of other components. For example, the compatibility between
a new processor and established instruction set could be
proven without access to all code for that instruction set, or
more ambitiously, optimizations added to a compiler could
be verified against the same spec as the unoptimized version.
The main challenge in this work was to come up with

appropriately precise interface specifications. Each of them
needs to delineate the responsibilities of the components on
the two sides of the interface sufficiently, so that all compo-
nents can be verified individually against their interfaces and
yet compose into an end-to-end theorem stated without refer-
encing any of the intermediate specifications. We believe this
rigor about interfaces is necessary and useful even though
we could have built a full-stack proof for our particular ap-
plication with less effort – and for reasons discussed in sec-
tion 7.3.1, we chose to build the smallest application that
crosses the interfaces we wanted to study.

Concretely, the I/O of our IoT lightbulb demo is described
by a simple regex-like expression (see section 3.1) that be-
comes the top-level specification for the system of software
and hardware together:

BootSeq +++ ((EX b: bool, Recv b +++ LightbulbCmd b)

||| RecvInvalid ||| PollNone) ^*

Contributions. To our knowledge, no prior verification-
integration project spanning software and hardware has
involved unbounded reactive execution, interactive behaviors,
or realistic I/O interfaces like MMIO. Treatment of I/O in a
software/hardware-integration proof is especially challeng-
ing to incorporate into our modular design, because hard-
ware optimizations like pipelining and instruction caching
require additional validity conditions from the software, but
these conditions cannot be stated in terms of the concepts
of any one layer and need to span the entire stack. We de-
scribe intricate specifications of intercomponent interfaces
that together guarantee predictable execution without ex-
posing undue detail and which are parameterized over the
underlying I/O mechanism (MMIO in the demo).

Semantics of our system’s internal layers from source code
to assembly are written in a novel manner that we call CPS
semantics. We found it particularly convenient for control-
flow-directed “forward” reasoning even in the presence of
undefined behavior, external input (or any nondeterminism),
and potentially divergent computations.
Additionally, ours is the first applications-to-hardware

integration-verification project to use an ISA supported by

commercial off-the-shelf processors (concretely, with the
RISC-V ISA). This choice allowed us to build our first pro-
totype by buying a commercial microcontroller and imple-
menting its software stack with off-the-shelf tools; then we
experimented separately with replacing each of the hard-
ware and software parts with a verified version, testing it
against the mainstream version of the other side. We also
felt this baseline of realism was important to keep us from
cutting corners.

Availability. All code and mechanized proofs in this
project are available under a permissive open-source license
at

https://github.com/mit-plv/bedrock2/

Structure of the Paper. The remainder of this paper is
structured as follows: section 2 reviews prior work, also
taking the opportunity to define a few important concepts.
Section 3 gives a brief overview of our system. Section 4
introduces our application programming language and the
style of semantics used throughout the system. In section 5,
we describe the layers of our stack, the interfaces between
them, and our verification that they adhere to these inter-
faces, culminating in the presentation of our end-to-end
theorem describing the behavior of the overall system con-
cisely and with formal accuracy. While section 5 focuses on
the vertical modular decomposition of the system into layers,
section 6 discusses the horizontal modular decomposition
achieved by parameterization throughout layers. Section 7
discusses the engineering effort and other evaluation criteria,
and section 8 concludes.

2 Related Work and Concepts
2.1 Integration Verification
When integrating two components, we need to ensure that
theymake the same assumptions about the interface between
them. Our strategy is to write down the interface specifica-
tion in a format that is both human- and machine-readable
and to verify that both components adhere to it.

Successful examples of such work include the Verified Soft-
ware Toolchain (VST) [3], which verifies C programs against
logical specifications in Coq, compiles these programs using
CompCert [27], and achieves verified integration of the C
programs and the compiler because both of them use the
exact same specification of the C language written in Coq.
Similarly (but with a different, abstraction-layer-based

proof approach), the CertiKOS [19] verified operating system
implemented in C integrates in a verifiedwaywith a fork [18]
of the CompCert compiler, and recent encouraging work [24,
30] is trying to integrate it with VST.

2.2 Automated Symbolic Execution
A promising approach for integration verification that is
more automated than the projects just surveyed and ours

https://github.com/mit-plv/bedrock2/

Integration Verification across Software and Hardware for a Simple Embedded System PLDI ’21, June 20–25, 2021, Virtual, Canada

Table 1. Our evaluation criteria for verified stacks

Key:
✓ met
∼ partially met
✗ not met
− not applicable

se
L4

[2
3]

VS
T+

Ce
rt
iK
O
S
[3
0]

Co
m
pC

er
tM

C
[4
1]

Ev
er
es
t[
6]

Se
rv
al
[3
3]

Vi
go

r[
43
]

CL
Is
ta
ck

[5
]

Ve
ris

of
t[
2]

Ca
ke
M
L
[2
5,
29
]

Th
is
pa
pe
r

Applications
OS and/or drivers
Source language
Assembly
Machine code
HDL
Integration verification∼ ∼ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

One proof assistant ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓

Modularity ∼ ✓ ✓ ∼ ✗ ✓ ✓ ✓ ✓ ✓

Standardized ISA ✓ ✓ ✓ ✓ ✓ ✓ ∼ ✗ ✗ ✓

HW optimizations − − − − − − ∼ ✓ ✗ ✓

Realistic I/O ✓ ∼ ✗ ✗ ∼ ✓ ✗ ∼ ✗ ✓

is to use SMT solvers and symbolic execution. Solvers are
used to test reachability of unexplored control-flow paths,
and this symbolic analysis can eventually certify that all rel-
evant paths have been explored in full generality. Examples
of verification tools built in this style include in the Hyper-
kernel project [34], the Nickel information-flow-checking
tool [38], Serval [33], and Vigor [43]. Several of these tools
apply directly to assembly or machine languages, solving
the integration-verification problem between the source lan-
guage and the compiler.

While these approaches offer a high degree of automation,
they rely on knowing simultaneously the implementations of
all components being verified as compatible with each other.
We are not aware of past work of this kind that crosses the
software-hardware boundary, e.g. using symbolic execution
to realize that a tricky conditional in a processor went a
certain way, so that we should find a software-level test
vector exercising the other case. Perhaps more importantly,
the inherently unmodular nature of analysis fails to reap the
benefits associated with classic techniques in Hoare logic and
elsewhere, where we can modify one component of a system
without needing to adjust the proofs of others. There are
examples of mixing the two approaches, like how Vigor [43]
uses Hoare-logic-style proofs of important library routines
to summarize them soundly in symbolic execution, though
such hybrids suffer from larger verification trusted code
bases, typically with no proof of the interface between the
symbolic executor and the Hoare-logic-style tool.

2.3 Height of the Verified Stack
As every layer of a software stack could contain bugs, it is
desirable that the verification effort spans a stack height as
large as possible (visualized in Table 1).
When it comes to starting the verification as high-up as

possible, a notable project is Everest [6], which develops a
TLS stack and an appropriate set of cryptographic primitives
using a number of SMT-based tools. And when it comes to
ending the verification as low as possible in the stack, an-
other project worth mentioning is CompCertMC [41], which
extends CompCert [27] to compile to machine code running
on a realistic machine model rather than compiling just to an
assembly language with pseudo-instructions and a machine
model with an unbounded stack. However, we have not yet
seen this work being integrated with projects building on
top of CompCert, such as VST and CertiKOS.
When thinking about extending the verified stack at the

bottom, the interface between software and hardware is
both important and subtle. The question is not just “what
if the hardware contains bugs?” but crucially also “what if
the software and the hardware make different assumptions
about how the instructions should behave?”

2.4 Verified Software-Hardware Integration
We are aware of three prior projects that achieve integration
verification across the software-hardware boundary. They
all do so by connecting all components within one proof
assistant, thus reducing the trusted audit-worthy code base
to just their top-most and bottom-most specifications and
the proof assistant.
In the late 1980s, the CLI stack [5] connected a Pascal-

like language to a 32-bit microprocessor design described in
minimalistic register-transfer language. The purpose-built
languages were modeled using interpreters and omitted in-
put or output facilities. The processor implementation is
described as a loop that executes one instruction per iter-
ation and includes, for example, waiting for responses to
memory requests [21]. The verified software for this stack
included arithmetic on large integers and a solver for the
mathematical game Nim, and a successor of the processor
was fabricated using gate-array technology.

The Verisoft project [2], begun in the early 2000s, connects
a correctness framework for programs written in a language
they call C0 to a compiler targeting their purpose-built VAMP
processor architecture. To our knowledge, no complete phys-
ical demonstration system including input and output was
ever built with this stack, and we also are not aware of any
full-system proof against a concise application specification
in terms of input and output. The closest we are aware of
related a correctness proof of a small automotive-control
C0 application to the correctness proof of an operating sys-
tem [12], plugging into a proved stack including compiler and
processor, but there is no discussion of a short full-system

PLDI ’21, June 20–25, 2021, Virtual, Canada Andres Erbsen, Samuel Gruetter, Joonwon Choi, Clark Wood, and Adam Chlipala

theorem, even though each interface individually seems to
have been crossed for non-I/O code [40].

In work begun roughly 15 years after the Verisoft project
started, the CakeML optimizing compiler [25] was extended
with a backend to a new, purpose-built instruction set called
Silver [29]. This time the software stack did support input
and output, but the complete stack still did not. Instead, ex-
ternal calls for file-system access and standard input/output
were compiled into reads and writes of a memory buffer.
The stack was run on an FPGA, with a commodity micro-
processor connected to the same memory to initialize input
and collect output (in contrast to our experiments using
a freestanding system). With this setup, several nontrivial
programs were executed: word count, sorting, and even com-
piling a “hello word” program using a cross-compiled copy
of CakeML itself. Application software was written in an ML
dialect, while our project involves low-level software written
in a C-like language and proved functionally correct, hewing
more closely to typical practices in embedded systems.

Unfortunately, none of the three above projects performs
what we call realistic I/O: CLI and Silver only provide end-
to-end proofs about values written into the main memory,
and Verisoft I/O proofs do not cross the hardware-software
interface [1]. Moreover, each of them uses its custom-built
ISA instead of a standardized ISA, raising the question of
whether integration techniques are up to the challenge of
realistic architectures.

3 Overview
This project provides a simple embedded-systems stack in-
cluding software as well as hardware for building single-
threaded applications that do not require an operating sys-
tem and communicate with the external world over Ether-
net. Each of its components is developed in the Coq proof
assistant and comes with a specification that is both human-
readable and machine-readable. As a result, we can write
machine-checked end-to-end proofs about the I/O behavior
of a system, where all the intermediate specifications cancel
out, resulting in a concise description of the system’s behav-
ior stated in terms of just the highest-level application logic
and lowest-level hardware model.
Figure 1 gives an overview of our system. The software

is written in a minimal C-like language of our devising,
Bedrock2. The compiler can be fed a source program and
be executed inside Coq to create a RISC-V binary, and the
processor written in the Kami framework [10] can be ex-
ported to a design in the Bluespec HDL1. (This automatic
translation to a language outside Coq is where our trust
structure bottoms out, handing over control to tools that
are not verified.) Using the Bluespec compiler, our design
is compiled to Verilog and then synthesized onto an FPGA,
whose BRAM memory is initialized with the RISC-V binary.

1https://github.com/B-Lang-org/bsc

Bedrock2 source

Bedrock2 compiler

Kami processor

End-to-end theorem

Coq development

Bluespec design

RISC-V binary

Verilog design

BRAM

FPGA

yosys

bsc

Coq

Exported C code Commercial
RISC-V processor

RISC-V binaries
produced with

existing compilersCoq

Figure 1. System overview. The top row highlights compat-
ibility with existing interfaces and tools.

While this paper focuses on the components inside the
large box in Figure 1, it is worth emphasizing that the sys-
tem adheres to existing interfaces where it makes sense, as
illustrated by the arrows crossing the boundary of the large
box: RISC-V binaries compiled with other compilers can be
run on the Kami-generated processor, RISC-V binaries com-
piled with the Bedrock2 compiler can be run on commercial
RISC-V processors, and Bedrock2 source programs can be ex-
ported to C code. However, there is an existing interface, the
C language, that we take inspiration from but do not adhere
to strictly, similarly to other verification projects [17, 20, 34].
Using Bedrock2 instead of C was expedient both in that
it allowed us to skip implementing unneeded features and
to avoid choosing and defending an interpretation of con-
tentious points in C semantics [16, 31]. Importing C code
into Bedrock2 is thus not supported in general, but manual
translation of our embedded-systems code proved straight-
forward.

While this system could be used for any simple application,
this paper focuses on one specific example we call the verified
IoT lightbulb. In this example, the FPGA running the verified
system is connected to a network interface card and to a
power switch controlling a lightbulb, as shown in Figure 2.
The only functionality of the application running on the
FPGA is to read UDP packets from the network interface card
and turn the lightbulb on or off depending on the first byte
of the received packet. Any unexpected packet, no matter
how maliciously malformed at any layer, is ignored, and
the application does not send any packets to the network
card. This guarantee is important despite the simplicity of
the application: confusing a word count for a byte count
led to an unprovable Coq goal during the development of
our Ethernet driver. The nature of the issue was quickly
confirmed by exploiting the bad check to grow the heap into
the stack and gain remote code execution on the development
system.

https://github.com/B-Lang-org/bsc

Integration Verification across Software and Hardware for a Simple Embedded System PLDI ’21, June 20–25, 2021, Virtual, Canada

FPGA

NIC

Ethernet

power switch

Figure 2. System demo

It is important that this property can not only be written
down and checked against our implementation (which we
have done) but also that the statement of this property is
easy to audit, because it is expressed concisely, as we show
in the following subsection.

3.1 The Trace Predicate
We state application-level specifications as predicates over
traces of the MMIO reads and writes issued by the processor.
AnMMIO trace is a list of triples, where ("ld", addr, value)

means that the system issued an MMIO-load request with
address addr on the memory bus and got value as the reply,
and ("st", addr, value) means that the system issued an
MMIO-store request with address addr and value value.
Our specifications stand for sets of legal I/O traces.
For readability, we write them in the style of regular ex-

pressions, with notation ||| for union, +++ for concatenation,
and ^* for zero or more repetitions. However, our trace pred-
icates are general logical functions over traces, so we retain
the full expressive power of higher-order logic. For instance,
we can define a notation (where a may occur free in P)

EX a:T, P := (𝜆 t:trace⇒ ∃ a:T, P(t))

which means that there exists an a of type T such that the
trace satisfies P. Our top-level spec is named goodHlTrace

(“good high-level trace”) and defined as

Definition goodHlTrace :=

BootSeq +++ ((EX b: bool, Recv b +++ LightbulbCmd b)

||| RecvInvalid ||| PollNone) ^*.

Every trace accepted by goodHlTrace starts with a series of
incantations BootSeq mandated by the Ethernet controller.
After that, goodHlTrace requires that the trace only consists
of three kinds of interactions: receiving a valid UDP packet
containing a Boolean b (Recv b) followed by turning the light-
bulb on or off depending on the value of b (LightbulbCmd
b); or silently ignoring an invalid packet (RecvInvalid); or
polling the Ethernet card for a new packet but getting the
response that there is none (PollNone).

The subspecifications (BootSeq, etc.) are defined similarly
along with a simple (and lax) specification of byte strings

accepted as Ethernet and UDP packets. All the above take
up less than a page of code and form our application-level
promise to the user, which we prove all the way down to the
level of particular hardware designs with memory initialized
with concrete bytes.

4 CPS Semantics
The Bedrock2 compiler uses a particular style of semantics
that we call CPS semantics. CPS semantics are compatible
with the weakest-precondition semantics of our program
logic as well as with the traditional small-step operational
semantics of Kami, but they offer the advantage that they
enable forward-style compiler-correctness proofs even in
the presence of external and internal nondeterminism.2

Forward-style compiler-correctness proofs [28] associate
to each successful source-language execution a successful
target-language execution. With traditional small-step or
big-step operational semantics, forward-style proofs only
work for external nondeterminism and become (almost)
useless once internal nondeterminism is added to the se-
mantics, because they cannot exclude that the target pro-
gram has unwanted behaviors that differ from those cho-
sen by the compiler-correctness proof, and one has to use
backward-style proofs instead, which prove that for each
target-language execution, a corresponding source-language
execution exists. However, backward-style proofs are much
more tedious, and experts avoid them whenever possi-
ble [28, 36], because they require a more-detailed simulation
relation that considers each intermediate target-language
state for the case where one source-language instruction is
translated to several target-language instructions.
On the other hand, derivations in CPS semantics, as we

will see, talk about all possible executions at once and there-
fore do not suffer from this problem. A forward proof be-
tween CPS-semantics derivations says that if all source-
program executions are successful then all executions of
the compiled code are successful.
We start by presenting the weakest-precondition defini-

tion of the program logic, so that we can contrast CPS se-
mantics to it in the next subsection.

4.1 The Bedrock2 Program Logic
Bedrock2 programs, such as the application and driver code
of the lightbulb, are proven against a verification-condition
generator, which serves as the top-level specification for this
language. It takes as arguments the program 𝑐 , the trace of
past external calls 𝑡 , the Bedrock2-owned memory𝑚, the
values of the local variables ℓ , and a claimed postcondition𝑄

2We say that a labeled state transition system has internal nondeterminism if
it has states that can step to several possible next states without reading any
input to decidewhich state to pick, andwe speak of external nondeterminism
if different inputs cause a given state to step to different next states. We
believe this terminology is consistent with CompCert [28].

PLDI ’21, June 20–25, 2021, Virtual, Canada Andres Erbsen, Samuel Gruetter, Joonwon Choi, Clark Wood, and Adam Chlipala

which itself is a predicate on trace, memory, and locals:

vcgen(𝑐, 𝑡,𝑚, ℓ,𝑄)
When applied to a program 𝑐 , vcgen answers the question
“what needs to be proven to know that executing statement 𝑐
from state (𝑡,𝑚, ℓ) always terminates in states satisfying𝑄?”,
i.e. it returns the weakest precondition that must hold before
executing 𝑐 if we want 𝑄 to hold after executing 𝑐 . At the
beginning of verification of each function, vcgen is invoked
on universally quantified inputs, so for each function with
body 𝑐 , precondition 𝑃 , and postcondition 𝑄 , we prove

∀ 𝑡 𝑚 ℓ. 𝑃 (𝑡,𝑚, ℓ) ⇒ vcgen(𝑐, 𝑡,𝑚, ℓ,𝑄)
The definition of vcgen is structurally recursive on the pro-
gram and handles most cases very similarly to a hypothetical
continuation-passing-style (CPS) interpreter for Bedrock2
programs, except in the loop case it asks for a loop invariant
and a decreasing measure instead of unrolling the loop. For
example, the sequence case vcgen(𝑐1; 𝑐2, 𝑡,𝑚, ℓ,𝑄) returns

vcgen (𝑐1, 𝑡,𝑚, ℓ, (𝜆𝑡 ′𝑚′ℓ ′. vcgen(𝑐2, 𝑡 ′,𝑚′, ℓ ′, 𝑄)))

4.2 Induction on all Executions
For the compiler-correctness proof, we need semantics that
allow us to write proofs by induction on the execution (rather
than the structure) of a program, so we cannot directly use
the above vcgen semantics. The CPS semantics is obtained by
translating the weakest-precondition generator vcgen into an
inductively defined relation (𝑐, 𝑡,𝑚, ℓ) ⇓ 𝑄 between starting
states and postconditions while maintaining the CPS form. In
order to make sure our top-level theorem does not depend on
this semantics that is not (yet) well-established in the com-
munity, we prove in section 5.8 that it agrees with traditional
small-step semantics. A small tweak is needed to make the
sequence and loop cases pass the strict-positivity require-
ment of inductive definitions: we “bake in” the weakening
rule of Hoare logic to avoid invoking the inductive under
binders in its own postcondition position (𝑄1 below). We see
that, having removed the structural-recursion requirement,
the loop case can be specified in a step-by-step fashion:

expr_evaluates(𝑒,𝑚, ℓ, 0) 𝑄 (𝑡,𝑚, ℓ)
(while(𝑒)𝑐, 𝑡,𝑚, ℓ) ⇓ 𝑄

expr_evaluates(𝑒,𝑚, ℓ, 𝑣) 𝑣 ≠ 0 (𝑐, 𝑡,𝑚, ℓ) ⇓ 𝑄1
∀ 𝑡 ′𝑚′ ℓ ′. 𝑄1 (𝑡 ′,𝑚′, ℓ ′) ⇒ (while(𝑒)𝑐, 𝑡 ′,𝑚′, ℓ ′) ⇓ 𝑄2

(while(𝑒)𝑐, 𝑡,𝑚, ℓ) ⇓ 𝑄2

A (potentially infinitary) derivation tree of this relation
is a step-by-step explanation of how all possible executions
of this program terminate in states satisfying the postcon-
dition. Following this intuition, both failure and nondeter-
minism can be modeled straightforwardly: if any of the pos-
sible nondeterministic execution branches starting in state
(𝑐, 𝑡,𝑚, ℓ) fails, (𝑐, 𝑡,𝑚, ℓ) ⇓ 𝑄 cannot be proven, no matter

what 𝑄 is. On the other hand, traditional operational se-
mantics need to talk about failures explicitly or model their
absence separately, to make sure failing execution branches
are not discarded silently. For instance, CompCert’s defini-
tion of backwards simulation needs to reference two sepa-
rate judgments about program execution, called safe and
Step, and CompCert cannot use the more convenient [28, 36]
forward simulations in the presence of internal nondetermin-
ism, whereas CPS semantics allow us to deal only with one
judgment about program execution and to do all proofs in
forward style. Inductively defined Hoare triples can be used
as specifications for both source and target language during
compiler verification, in which case induction over the se-
mantics corresponds (modulo weakening) to induction over
syntax trees (with nested induction over termination mea-
sures for the loops). We believe this style might have worked
just as well above the assembly-language level. Hoare logics
for machine code have also been crafted, but their design has
been the main subject of entire papers [9, 32], whereas we
got away with instantiating an existing monadic interpreter
to get a CPS-semantics definition (section 5.4).

4.3 CPS Semantics for RISC-V
Contrary to Bedrock2 programs, RISC-V programs stored in
the memory of a RISC-V machine do not really have a notion
of termination: the processor keeps executing the instruction
pointed to by the program counter forever. This means that
a structurally recursive weakest-precondition generator can
only be written for individual RISC-V instructions, not entire
programs. We write 𝑠 → 𝑄 to say that executing one instruc-
tion on a RISC-V machine in state 𝑠 (which includes data
memory as well as instruction memory, registers, program
counter, etc.) successfully results in a state that satisfies 𝑄 .
To lift this predicate from a single step to multiple steps,

we use an operator ♢ we call the eventually operator that
serves a similar purpose as the transitive-closure operator:

𝑄 (𝑥)
𝑥 →♢ 𝑄

𝑥 → 𝑄1 ∀𝑦. 𝑄1 (𝑦) ⇒ 𝑦 →♢ 𝑄2 (𝑦)
𝑥 →♢ 𝑄2

Note that it allows each nondeterministic branch to use a
different number of steps, so the number of execution steps
can depend on an input value modeled as nondeterministic.

5 Layers of the Stack
Figure 3 presents a detailed view of the system. This section
consists of a top-to-bottom tour through the figure, explain-
ing how each component (white rectangle) is implemented
and verified against the interfaces surrounding it (gray rect-
angles), and a presentation of how to compose the hardware
and software proofs into a single end-to-end theorem.

Integration Verification across Software and Hardware for a Simple Embedded System PLDI ’21, June 20–25, 2021, Virtual, Canada

trace property regexes

sp
e

cs

sp
e

cs

verification conditions
program logic Key:

Bedrock2 source language
flattening phase component

FlatImp with variables
register allocation phase interface

FlatImp with registers

processor-ISA consistency proof
1-stage processor

Kami hardware description language

SPI
driver

LAN9520
driver

lightbulb
 app

se
m

an
tic

s
of

e

xt
er

na
l c

al
ls

MMIO external
calls compiler

compo-
sitional

compilation

compiler
RISC-V
backend

nonmemory
load/store

RISC-V as specified by
riscv-coq

memory
& MMIO
module

RISC-V
ISApipelined

processor

Figure 3. Components and interfaces of our system

5.1 The Application Layer
At the very top of Figure 3, a trace property we call
goodHlTrace (sketched for the lightbulb in section 3.1) de-
fines which I/O traces are acceptable behaviors of the system.
In general, this property should ignore all internal imple-
mentation details and only describe what transpired on the
hardware-software system’s inputs and outputs. As we are
only dealing with digital systems, it is natural for these traces
to apply discretely, with at most one entry per hardware cy-
cle.

Our prototype consists of three Bedrock2 source files: SPI,
the driver used to communicate with the network interface
card; LAN9250, the Ethernet device driver; and lightbulb, an
infinite loop that polls the network card for packets, pro-
cesses them, and turns the lightbulb on or off depending on
their content.We replicated the SPI and GPIO interfaces from
the commercial FE310 RISC-V microcontroller [22] based on
the Rocket [4] RV32IMAC core, which allowed us to do sepa-
rate testing of our hardware and software (on the FE310 chip
itself). The SPI interface exposes send and receive queues via
MMIO, relying on polling to detect peripheral-initiated flag
changes. The LAN9250 Ethernet controller’s API is exposed
as a range of SPI-accessible address space where reads and
writes to different addresses correspond to different opera-
tions.

5.2 The Bedrock2 Source Language
We write our application code in a syntactic subset of C
that we call Bedrock2, with semantics that include most but
not all opportunities for undefined behavior from C. For

instance, like in C, accessing out-of-bounds memory is unde-
fined behavior, but unlike C, division by zero is allowed3, and
comparisons between any two pointers are allowed, whereas
C assigns undefined behavior to less-than comparisons of
two pointers if they do not belong to the same object. The lan-
guage statements include memory write, if-then-else, while
loops, and function calls with support for returning tuples
of values. Syntactically, we distinguish calls to Bedrock2-
defined procedures and calls to external procedures. The
semantics records the latter in an interaction trace (which is
only used in specifications, not maintained at runtime). Ex-
ternal procedures can update the memory (and such updates
are recorded in the trace), but we do not make use of this
feature, because we have not yet modeled it on the RISC-V
level. The memory is modeled as a global (not necessarily
contiguous) address space of bytes without any artificial lim-
itations (effective type, provenance, alignment, etc.) on how
they can be accessed. All function arguments and local vari-
ables in Bedrock2 have the same type, word, whose bitwidth
depends on the bitwidth of the target machine.

The Bedrock2 source language is very simple, to the point
where one might wonder whether it would scale to bigger ap-
plications. However, since the development of Bedrock2 pro-
grams happens inside Coq, we already have the full power of
all of Coq’s abstraction mechanisms at our disposal, and we
have used them for both data-representation specifications
and syntactic-sugar macros. In addition, there is ongoing
work on compiling higher-level languages to Bedrock2.

We outright omit higher-order features such as function
pointers and mutually dependent compilation units, which
lets us avoid the semantic intricacies studied in the work
on compositional compilation [39]. While implementations
of external calls are still required to preserve the same in-
variants as the compiler itself when called in accordance to
their specifications, this requirement can be stated straight-
forwardly and proven without reference to the calling code
(section 6.1).

The Event-Loop Invariant. We only model behavior of
terminating programs in the Bedrock2 source language, im-
plicitly identifying nontermination with undefined behavior.
Totality is an important correctness property and a slight
simplification, but it also forced us to verify the customary
top-level init(); while(1) loop() idiom of simple embed-
ded programming directly against the RISC-V semantics. We
first state an invariant inv on a RISC-V machine that holds
at the beginning of each loop iteration. As loop-iteration
boundaries are not observable from outside the system, we
then use the eventually operator (section 4.3) to construct an

3Division is modeled as an axiomatically specified total deterministic func-
tion, and the source-language semantics do not specify what it returns for
divisions by zero, whereas the compiler assumes that it returns the concrete
values specified by RISC-V.

PLDI ’21, June 20–25, 2021, Virtual, Canada Andres Erbsen, Samuel Gruetter, Joonwon Choi, Clark Wood, and Adam Chlipala

instruction-by-instruction invariant saying that the execu-
tion is a finite number of steps away from a state satisfying
inv, and we use the always operator (5.8) to assert that for
all correctly initialized RISC-V states s, this new invariant
applies as well: swalways s (fun s' ⇒ s' →♢ inv).

5.3 The Bedrock2 Compiler
Below the box for the source language in Figure 3, we show
the intermediate languages of the 3-phase compiler, which
are fairly standard for verified compilers today, bottoming
out in lists of position-independent RISC-V instructions,
which are then encoded to bytes as specified by RISC-V.

The semantics for Bedrock2 and internal intermediate
languages of the compiler are all in CPS (section 4), which
enables us to write all compiler-correctness proofs as for-
ward proofs, even though the languages have external non-
determinism (from axiomatically specified external calls) as
well as internal nondeterminism (the address at which stack
allocation allocates memory is unspecified).
To describe the application memory as well as the mem-

ory introduced by the compiler such as the stack and the
instruction memory, we use separation logic throughout all
compiler-correctness proofs. This, together with disallowing
recursive functions and statically tracking the stack-space
requirements of each function, enables us to prove that the
application memory, stack memory, and instruction mem-
ory all fit into the same memory. We also prove that the
application will never run out of memory, a guarantee that
other compilers such as CakeML or CompCert do not pro-
vide but which is essential to obtain a meaningful end-to-end
theorem.

5.4 The RISC-V ISA and its Formal Semantics
RISC-V [42] is the only instruction set allowing us to
create and distribute our own implementations without
running afoul of patents, while also featuring realistic
silicon-fabricated processors and production-quality soft-
ware toolchains. We used a formal model of RISC-V written
in Haskell [7] that was translated to Coq using hs-to-coq [8].
For flexibility reasons, the semantics in Haskell deliber-

ately only specifies how each RISC-V instruction is defined
in terms of a small number of primitives such as reading and
writing registers or memory, without giving semantics to
these primitives or specifying any data type representing
the state of a RISC-V machine. For instance, the store-word
instruction Sw is turned into a sequence of the four primi-
tives getRegister, translate (performing virtual-to-physical
address translation), getRegister, and storeWord:
| Sw rs1 rs2 simm12 ⇒

a ← getRegister rs1;

addr ← translate Store 4 (add a simm12);

x ← getRegister rs2;

storeWord Execute addr (regToInt32 x)

IF ■ ID ■ EX ■ WB

■

BTB

I$

RF

ISA ISA ISA

Key:
■ : FIFO queue
IF: instruction fetch
ID: instruction decode
EX: execution
WB: write-back
RF: register file

Figure 4. The Kami processor and its two asynchronous
memory interfaces. Our additions are highlighted in gray.

To prove a compiler correct against these semantics, we
need to define a state type and define how the primitives op-
erate on it. We have both a deterministic implementation, al-
lowing us to run small RISC-V programs in Coq, and a nonde-
terministic CPS semantics that includes MMIO. The compiler
proof is parameterized to apply to either (section 6.3). Our
models describe a single-core environment with no address
translation, but they expose limitations of naive instruction
caching (section 5.6).

5.5 The Kami Processor
We build on top of the Coq-verified processor from the Kami
hardware-verification framework [10], already equipped
with a four-stage in-order pipeline, and we made several
improvements and additions (shown in gray in Figure 4).
The baseline processor required the program to be specified
in the processor design; we added logic to fetch instructions
eagerly from main memory into an interface-compatible in-
struction cache residing in FPGA block RAM upon reset. We
also reconciled the instruction set with RV32I, by adding
missing instructions, including the fine-grained memory op-
erations load-byte (lb) and store-byte (sb), which required
adding byte-enable signals to the memory interface, and by
fixing some bugs. The bugs were of two kinds: liveness,
which is not covered by Kami’s specification and was found
through testing our application; and specification bugs that
had not been found by Kami’s specification-validation ef-
forts but showed up while trying to prove Kami’s RISC-V
specification equivalent to the one used by the compiler. We
also added a branch predictor BTB [35] and fixed an issue
that kept pipeline stages from executing concurrently.

5.6 Dealing with Stale Instructions
The instruction-set specification does not require memory
accesses for instruction fetching to be consistent with those
of load and store instructions, allowing implementations
to fetch and start executing instructions early (in this case,
through an I$ memory interface) without synchronization
circuitry to detect when an already-fetched instruction was
written to (through the memory interface of WB). While more-
sophisticated CPU designs can detect and handle such haz-
ards, it is overwhelmingly common for embedded systems
to implement the synchronization in software instead.

Integration Verification across Software and Hardware for a Simple Embedded System PLDI ’21, June 20–25, 2021, Virtual, Canada

We encode this discipline in the RISC-V model used
by the compiler by tracking a set of executable addresses
XAddrs throughout the execution. Whenever an instruction
is fetched, undefined behavior is triggered if the fetch ad-
dress is not in XAddrs, and each written address is removed
from the set of executable addresses. At boot, XAddrs covers
the entire memory. The correctness proof of our compiler
includes showing that the program addresses remain exe-
cutable throughout program execution.

The preservation of this invariant relies on external calls
not modifying the set of executable addresses, which in turn
only holds if the program is calling the external calls in accor-
dance with their specifications, which of course depends on
the correctness of execution of compiled code so far. We have
yet another example of how correctness specifications of in-
terfaces between embedded systems’ components are inter-
twined in nonobvious ways that have important engineering
benefits but are easily lost in academic simplifications.

5.7 Correctness of the Processor
A hardware design in Kami consists of modules with encap-
sulated private state (registers), public methods, and rules
that make atomic state changes. Kami exports to Bluespec,
and the Bluespec compiler discovers opportunities for par-
allel execution of rules, but with the convenient semantic
guarantee that the execution can be interpreted as if the
rules were executed one-by-one, called one-rule-at-a-time
execution. Behavior of Kami designs is modeled using tra-
ditional small-step semantics where each step corresponds
to a state transition by a rule in a module and records the
I/O events (external method calls) that happened. The step
definition has the form kstep m s1 s2 (which means that the
Kami module m steps from state s1 to state s2) and can be
lifted to characterize multiple steps (kstep∗) from the initial
state of a module (initial m) to define the set of traces of a
module:

Definition Trace (m: KModule) (tr: list Label) :=

∃ s, kstep∗ m (initial m) s ∧ tr = trace s.

The pipelined processor is proven to implement a single-
cycle processor model in the sense of refinement, showing
that the set of possible traces of the implementation is con-
tained in the trace set of the spec. A key property of the Kami
module system is modular refinement: in a system composed
of multiple modules, replacing any module with a spec that
it refines does not lose any behaviors. Thus, we were able
to prove our new instruction-cache logic without consider-
ing the rest of the processor: it simply refines the original
fetch stage in the baseline processor. The combinational-
logic functions for decoding and executing instructions are
shared between baseline single-cycle processor spec and the
pipelined implementation, so we were able to extend the ISA
and fix bugs in it without needing to touch a line of proof.

Unlike in the original Kami case study, we also need to prove
that all this logic matches the software’s assumptions.

5.8 Interfacing Hardware and Software
The Bedrock2 compiler and the Kami processor were devel-
oped independently and are proven correct against very dif-
ferent RISC-V specifications: a software-oriented assembly-
like semantics (section 5.4) and a single-cycle Kami model
processor (section 5.7). There are two challenges for proving
these specifications compatible: reconciling the encoding
styles in the two developments (a concise but tricky proof)
and proving equality of alternative ways in which the two
wrote down “the same” bitvector expressions (a simple but
strenuous proof). We will elaborate on the former.
The software-oriented specification is in CPS, that is, it

relates each starting state to a set of possible next states if
well-defined: swstep s Smeans that all states reachable from
s in one step belong to the set S, and crucially no execution
path can trigger undefined behavior. A state s where a step
may trigger undefined behavior satisfies ∀ S, ¬ (swstep s

S), which allows us to reject undefined scenarios before con-
sidering the possibilities for the next state. For non-MMIO
instructions, 𝑆 is a singleton set.

The Kami semantics does not have a notion of undefined
behavior. Scenarios that result in undefined behavior accord-
ing to the software-oriented swstep just proceed in some
arbitrary way according to Kami’s kstep relation. For ex-
ample, memory accesses at too-large addresses just wrap
around, ignoring the more-significant address bits. Input
nondeterminism is encoded in kstep by relating the state
before the input to multiple possible subsequent states, each
with a different label added to the I/O trace.

Wewant to show that swstep is a conservativemodel of the
possible Kami-processor-model executions. More precisely,
we want to consider an arbitrary Kami step from a state s1

that does not trigger undefined behavior according to swstep

but instead steps to a state in S, to show that the resulting
Kami state s2 is in S. As the two semantics use different
state types, we need to use a simulation relation (related)
to derive a type-correct version of the last sentence:

Theorem kstep1_sound : ∀ ks1 ks2 rs1 S,

swstep rs1 S ∧ kstep ks1 ks2 ∧ related ks1 rs1 →
related ks2 rs1 ∨ ∃ rs2, rs2 ∈ S ∧ related ks2 rs2

Note that both an invocation of the software-oriented
RISC-V semantics and a Kami execution appear as hypothe-
ses. Further, related includes invariants that arise from well-
defined swsteps, most importantly that the instruction cache
is consistent with main memory at the executable addresses
in the sense of section 5.6.
To derive correctness of multi-step executions, we prove

that if a predicate is an invariant (i.e., always holds on all
states reachable from a given initial state) according to the

PLDI ’21, June 20–25, 2021, Virtual, Canada Andres Erbsen, Samuel Gruetter, Joonwon Choi, Clark Wood, and Adam Chlipala

compiler’s semantics, it is also an invariant according to
Kami’s semantics:

Let swalways s P := P s ∧ ∀ s', P s' → swstep s' P.

Let kalways s P := ∀ s', kstep∗ s s' → P s'.

Theorem kstep_star_sound: ∀ inv ks1 rs1,

related ks1 rs1 ∧ swalways rs1 inv →
kalways ks1 (fun ks2 ⇒
∃ rs2, related ks2 rs2 ∧ inv rs2).

To obtain the end-to-end theorem, the invariant inv is in-
stantiated with the event-loop invariant from section 5.2.

5.9 The End-to-End Theorem
We finally assert application-level correctness of Kami I/O:
Theorem end2end_lightbulb: ∀ mem0 t,

bytes_at (instrencode lightbulb_insts) 0 mem0 ∧
Trace (p4mm mem0) t →
∃ t': list (string * word * word),

KamiRiscv.KamiLabelSeqR t t' ∧
prefix_of t' goodHlTrace.

In words, running our pipelined processor p4mm with any
memory mem0 that contains the lightbulb-program machine
code at address 0 only produces I/O traces that are related to
(prefixes of) traces allowed by the application specification.
The prefix closure is important because this theorem holds
at any point during the execution, without reference to any
notion of the software having “completed” a loop iteration.
The relation KamiRiscv.KamiLabelSeqR simply maps Kami
MMIO traces to triples with "ld" and "st" of section 3.1.
Another way to read this theorem is as system-bring-up

recipe: compute instrencode lightbulb_insts in Coq, place
it at address 0 in a memory, and arrange for this memory to
be connected to a correctly synthesized copy of p4mm. Then,
behavior described by goodHlTrace is to follow based on
our proofs. We would like to emphasize that, compared to
other verification projects, only requiring the three items
described above to be understood and trusted is veryminimal.
No semantics of instruction sets nor software programming
languages need to be trusted in order to trust this theorem,
and there is no unverified “host” device in our case study.
Moreover, there is also no bootloader. All one has to do

in order to create a physical system that satisfies the pre-
conditions of our theorem is to program an FPGA with the
design of the Kami processor and to put the Coq-generated
RISC-V binary code into the FPGA’s memory at address 0.
On FPGA reset, the Kami processor directly starts executing
at hard-coded address 0, so every instruction executed by
the system is taken into account by our theorem.

6 Parameterization across Layers
So far we have mostly emphasized vertical modularity. For in-
stance, we could swap the implementation of a layer such as
the compiler or the processor for a different implementation,

Table 2. Parameterization throughout the stack

Parameter Used in
external-call semantics program logic and compiler
external-calls compiler compiler and its proof
event-loop invariant compiler-processor lemma
bitwidth Bedrock2, ISA, processor
I/O mechanisms compiler and its proof
I/O load/store semantics instruction-set specification
external invariant ISA, compiler and its proof
ISA processor and its proof

and the specifications at the layer boundaries guarantee that
we need not revisit the other layers of the system. However,
some dimensions of variation across systems are orthogo-
nal to that decomposition. One natural example is which
peripheral devices are available and how to interact with
them. Every layer of our stack is parameterized by its rele-
vant choices there, and we think of this parameterization as
horizontal modularity.
For our lightbulb case study, the processor communi-

cates with the network card and the lightbulb power switch
through MMIO. In this section, we particularly focus on the
parameterization for I/O devices, while Table 2 summarizes
other examples of parameterization in our stack.

Such composition of different pieces of compiled programs
has been studied before, e.g. in CompCompCert [39] using a
block-based infinite memorymanaged by an allocator behind
the curtains (even after compilation), whereas our compo-
sition has to work in a setting where the different pieces
of machine code access the same flat finite address space
that is used not only as data memory but also as instruction
memory and for memory-mapped I/O.

6.1 I/O in Bedrock2
In Bedrock2 source code, we use a syntactically distinct con-
struct for MMIO. To keep the language more general, we do
not introduce a specific construct just for MMIO but rather a
more-general construct we call external calls, which appear
as special functions callable like any others. The semantics
of the source language are parameterized over the behav-
ior of these external calls. The concept of external calls is a
strict generalization of MMIO, not a relaxation of semantics:
the source-code-level verification condition for an MMIO
external call still needs to restrict the address to be within
MMIO range.

Integration Verification across Software and Hardware for a Simple Embedded System PLDI ’21, June 20–25, 2021, Virtual, Canada

Recall the discussion in section 4.1 of the verification-
condition generation. Here is the case for external calls (sim-
plified assuming one argument and one return value):

vcgen((𝑥 = 𝑓ext (𝑒)), 𝑡,𝑚, ℓ,𝑄) :=
∃𝑣 . expr_evaluates(𝑚, ℓ, 𝑒, 𝑣) ∧

vcextern(𝑓ext, 𝑡, [𝑣],
𝜆𝑟 . 𝑄 ((𝑓 ,[𝑣],[𝑟])::𝑡,𝑚, ℓ [𝑥 := 𝑟]))

The predicate vcextern is a parameter of the semantics – for
the lightbulb, we instantiate it with a characterization of
MMIO load and store operations and allowed address ranges
in our platform. Like vcgen, vcextern computes a precon-
dition that is sufficient to guarantee that the postcondition
𝑄 received as input to vcextern holds after the call. An im-
portant difference between vcgen and vcextern is that vcgen
models deterministic steps, whereas vcextern needs to ac-
count for unknown runtime inputs, which are represented
using a universal quantifier in the definition of vcextern. For
example, an external call called "arbitrary" that requires
exactly one nonzero argument 𝑏 and can return any number
less than 𝑏 would have the specification

vcextern("arbitrary", 𝑡, 𝑎𝑟𝑔𝑠,𝑄) :=
∃𝑏. 𝑎𝑟𝑔𝑠 = [𝑏] ∧ 0 < 𝑏 ∧ (∀𝑟 . 𝑟 < 𝑏 ⇒ 𝑄 (𝑟))

Note that when proving the proof obligation returned by
vcextern, the programmer has to prove 𝑄 (i.e., verify the
remainder of the program) for all possible 𝑟 .

6.2 I/O in the ISA Semantics
Our RISC-V specification is also parameterized over external
interactions, implemented by giving special treatment to
loads and stores that fall outside the memory owned by
the code running on this processor. This special treatment
records nonmemory loads and stores in the I/O trace of all
externally visible behavior of the system, for which the end-
to-end theorem will assert that it satisfies the goodHlTrace

property. In our instantiation of the ISA specification, the
memory footprint remains unchanged throughout execution.
The parameter modeling external interactions caused by

an n-byte nonmemory load, nonmem_load, takes an address
a, a machine state s, and (in the same style as vcgen and
vcextern) a postcondition Q, returning the proof obligation
the compiler has to prove to make sure that Q holds after ex-
ecuting the load instruction. Here is the instance for MMIO:

nonmem_load n a s Q :=

isMMIOAddr a ∧ isMMIOAligned n a ∧
∀ v, Q v (withLogItem (@mmioLoadEvent a n v) s).

It requires the compiler to prove that a is in the MMIO range,
it is n-byte aligned, and the desired postcondition holds for
a machine state where the address and the unknown read
value v have been added to the I/O log. The same interface is
also powerful enough to model direct memory access (DMA),

by recording memory-ownership changes in the I/O trace,
but we do not make use of this feature in the lightbulb appli-
cation.

6.3 I/O in the Bedrock2 Compiler
Our compiler pipeline is parameterized over an external-calls
compiler, which defines how to implement each call with
machine code. In the lightbulb example, it simply translates
MMIOREAD and MMIOWRITE calls to lw and sw instructions.

We prove our compiler correct for all possible implemen-
tations of external calls in a compositional manner, requiring
the same correctness of the external-calls compiler as we
are proving about the whole compiler:

Lemma compiler_correct: ∀ compile_ext,

(∀ x fext a, correct compile_ext (x = fext(a))) →
(∀ program, correct (compile compile_ext) program).

Condition correct comp p says that feeding program p

into the compilation function comp produces position-
independent code that takes any machine state satisfying
the compiler invariant to some machine state satisfying the
compiler invariant and the postcondition of p (assuming
no execution of p from the given starting state can trigger
undefined behavior).
Note that the postcondition has to be translated as well,

because a source-level postcondition 𝑃 takes an I/O trace
𝑡 and a source-level state as arguments, whereas a target-
level postcondition takes a target-level state instead of a
source-level state. We do so using a state-representation re-
lation 𝑅 between source and target states, translating the
source-level postcondition 𝑃 into the target-level postcon-
dition 𝜆𝑡 𝑠tgt. ∃𝑠src. 𝑅(𝑠src, 𝑠tgt) ∧ 𝑃 (𝑡, 𝑠src). If we wanted to
support different trace formats for the source and target
languages, we could simply include the trace in the represen-
tation relation and translate the source-level postcondition
𝑃 into 𝜆𝑡tgt 𝑠tgt. ∃𝑡src 𝑠src. 𝑅(𝑡src, 𝑠src, 𝑡tgt, 𝑠tgt) ∧ 𝑃 (𝑡src, 𝑠src).

Verifying the External-Calls Compiler. The correct-
ness proof of the external-calls compiler (i.e., the proof of the
main hypothesis of the last lemma) relies both on the com-
piler invariant and on the source-level verification condition
of external calls (vcextern). However, the main compiler as
well as correct are too general to know anything about the
concept of MMIO, but they still need to empower the cor-
rectness proof of the external-calls compiler to show that the
loads and stores emitted for MMIO do not modify application
data or code. Therefore, the compiler invariant includes not
only administrative conditions regarding the stack and reg-
isters but also an external invariant that the code emitted by
the external-calls compiler can rely on and which the proof
of the main compiler takes as an abstract parameter. In our
case study with MMIO only, it is sufficient to use an external
invariant that requires MMIO addresses not to overlap with
the physical memory, and vcextern requires the application

PLDI ’21, June 20–25, 2021, Virtual, Canada Andres Erbsen, Samuel Gruetter, Joonwon Choi, Clark Wood, and Adam Chlipala

programmer to show that the addresses are indeed within
the MMIO range (see section 6.1).
We must also provide a means to the main compiler to

prove that it preserves the abstract external invariant, and
we do so by imposing the condition on the abstract external
invariant that it is preserved by all ordinary RISC-V instruc-
tions the main compiler uses (that is, in particular, excluding
lw and sw outside the physical memory).

We found these details to be a particularly tricky exercise
in parameterization and “threading” of invariants through a
development. The solution we describe here relies on quan-
tifying over predicates (vcextern and the external invariant)
and their properties, an example of how use of higher-order
logic enables modularity.

6.4 I/O in Hardware
I/O is encoded in Kami as invoking methods on an unspeci-
fied external module, which the semantics tracks in a behav-
ior trace. The processor itself does not distinguish ordinary
memory operations from MMIO. When the memory module
is attached, it handles the loads and stores to memory ad-
dresses but makes designated external method calls for the
rest. This factoring appears both in the pipelined processor
and in the spec processor, making for an easy correctness
proof by modular refinement.

6.5 Parameterization: Coq Pragmatics
By instantiating parameters appropriately, our main theo-
rem depends only on standard Coq axioms4. We parameter-
ize proof modules on records of assumptions, with many
assumptions shared across different record types, which in-
troduced more proof-automation complexity than we had
anticipated (see section 7.3.1).

7 Evaluation
7.1 Remaining Opportunities for Bugs
7.1.1 Trusted Code Base. The trusted code base of any
deployment of our system is dominated by external tools;
the key specifications of the verified part are minuscule in
comparison. This comparison holds even though the spec-
ifications of intermediate layers of our system are rather
intricate – only the top (application) and bottom (HDL) spec-
ifications are critical for correctness, and they are simple and
short. Table 3 provides a component-by-component break-
down of the specification size on the left, with a summary of
the tools we rely on to translate the HDL code to an FPGA
bitstream on the right. We would like to emphasize that all
tools we used are open-source and actively maintained.

7.1.2 Specification Fidelity and Security. We be-
lieve that single-Qed integration verification against
an application-level specification provides unparalleled

4Functional and propositional extensionality, Axiom K, and JMeq_eq

Table 3. Summary of our trusted code base

Coq spec, total lines of code
Lightbulb application 27
LAN9250 Ethernet driver 77
SPI driver 30
Driving digital outputs 10
Trace predicate notations 25
Semantics of Kami HDL ∼ 400

Other TCB
Verilog wrapper (∼200
LOC), Kami→Bluespec
extraction, Bluespec
compiler, Yosys &
Nextpnr [37], Coq proof
checker & dependencies

assurance against many known and unknown attacks. Any
behavior-changing attack through the MMIO interface
is ruled out by an end-to-end correctness theorem, even
though our specification contains no description of potential
attacks. For example, the theorem we proved implies that
the attacker cannot gain remote-code execution by sending
specially crafted network packets: executing code on our
system could easily be used to turn the lightbulb on when
not allowed by the specification.
One security-relevant limitation of our setup is that the

top-level specification does not specify the timing of inputs
and outputs. Even though the software is proven to terminate,
and the compiler is proven to preserve termination, the Kami
processor (according to the proofs alone) is not guaranteed
ever to execute an instruction – we just tested that it does.
For the same reason, our framework does not give a way
to guarantee that execution time does not depend on secret
values, but the application we chose for our case study does
not handle secrets.
Finally, we emphasize that our theorem applies to the

interface between the FPGA and the network interface card
shown in Figure 2, i.e. the network interface card is excluded
from the verification.

7.2 Performance
7.2.1 Runtime Performance. Our system is fast enough
to control a lightbulb and many other mechanical systems.
We did not track or attempt to optimize the performance of
our system during development. Our goal to exercise seri-
ously the intramodule flexibility provided by our interfaces
sometimes led us to implement common optimizations (e.g.,
register allocation), but most design decisions were made in
favor of simplicity over speed.
Running our processor with a 12MHz clock on a Lattice

ECP5-85k FPGA, we measured that it takes 5.5 ms from the
moment when the Ethernet device starts handing a packet
over to the processor to the actuation of the control output.
The corresponding figure for our initial unverified prototype
code with gcc -O3 and FE310 is 10x faster, just above 0.5ms.
We will now explain this ratio as a combination of two I/O
differences, a compiler weakness, and performance issues of
the Kami processor: 10x ≈ (1.4x × 1.2x) × 2.1x × 2.7x.

The vast majority of the running time is spent transferring
incoming packet data from the Ethernet controller to the

Integration Verification across Software and Hardware for a Simple Embedded System PLDI ’21, June 20–25, 2021, Virtual, Canada

processor over SPI using MMIO reads and writes to drive
the SPI peripheral. Both the verified and unverified versions
of the code use naive 4-byte transactions, but the unveri-
fied version makes use of the FE310 SPI pipelining feature
within each transaction: even though SPI communication
is inherently synchronous and bidirectional, the code first
writes the outgoing command and address into the transmit
FIFO and then reads the entire response out of the receive
FIFO. The trace specification applies to the MMIO interface
between the processor and the SPI peripheral, so we would
have needed to include this optimization in the specification
of the system behavior to support it. Our verified system
instead interleaves one-byte writes and reads, as captured
in the simplest specification we could come up with (and
our Verilog implementation of SPI does not support pipelin-
ing). Changing the original prototype to do the same slows
it down by 1.4x.
Another place where the final version of the code differs

from our initial prototype is that it maintains timeout coun-
ters for polling at both LAN9250 and SPI levels, exiting with
an error if the device does not respond within a reasonable
amount of time. The unverified prototype would happily
poll forever, which may be acceptable in some applications
and not others. We added the timeout logic when setting up
to prove total correctness for each iteration of the top-level
event loop. Measuring the verified code with gcc -O3 and
FE310, the timeout logic increases the response time by 1.2x.

Our compiler does not do constant propagation, function
inlining, or exploit caller-saved registers, whereas gcc -O3
inlines the SPI driver function call in the innermost loop and
compiles it to two instructions. Compiling the same verified
code with our compiler instead of gcc -O3 increases the
response time by 2.1x.

Using the Kami processor instead of FE310 is responsible
for the largest slowdown factor in our system, just above
2.7x. This system-level clock-frequency-relative slowdown
we observed is actually smaller than the 4.8x reported in [10,
Fig. 15.] (approximating the Rocket core as executing 1 in-
struction per cycle). However, our code is I/O-heavy, and
the FE310 SPI peripheral is connected to the CPU through
two layers of TileLink buses, which we expect to add consid-
erable latency compared to our SPI code in the same clock
domain and Verilog compilation unit as the Kami processor.
Thus it is not clear how much of the change from 4.8x to
2.7x to attribute to peripheral differences or our fixes to the
Kami processor to get it to run our code at all.

7.2.2 Verification Performance. The main Coq develop-
ment is built and verified automatically after every change
by continuous integration, requiring less than 7.5GB of RAM
and 80 minutes per build. Additionally, checking the Kami
refinement proofs takes around 2 hours.

Table 4. Lines of code

Excluded:
unrelated 10044
library 7301
imports 1907
doc 354
Kami 48294

im
pl
em

en
ta
tio

n
𝑚

in
te
rf
ac
e
𝑛

in
te
re
st
in
g
pr
oo

f𝑝

lo
w
-in

sig
ht

pr
oo

f𝑞

pr
oo

fo
ve
rh
ea
d

(𝑚
+
𝑛
+
𝑝
+
𝑞
)/
𝑚

im
ag
in
ed

ov
er
he
ad

(𝑚
+
𝑛
+
𝑝
)/
𝑚

lightbulb app 176 130 33 1443 10.1 1.9
program logic 0 208 552 1785 − −
compiler 931 1114 1325 6654 10.8 3.6
SW/HW interface 0 2053 991 3804 − −
end-to-end 0 254 74 539 − −

7.3 Effort
This project was completed over two-and-a-half years, start-
ing from a preliminary specification of RISC-V in Haskell
and (independently) the Kami framework and baseline pro-
cessor. Three people did the vast majority of the engineering,
joining respectively 6 months and 13 months into the two-
and-a-half-year project. While this project was largely the
main task for the people involved, it was hardly ever the only
responsibility, and we estimate an average level of effort of
66%, adding up to around four person-years of work.
In the “proof overhead” column of Table 4, the overhead

of formal verification (measured as the factor by which the
number of lines of code increases due to verification) is cal-
culated for different layers of the system (and omitted for
those layers that consist purely of proof).

7.3.1 Coq Wishlist. We caution against trying to use
these ratios to quantify the fundamental difficulty of systems
verification. Contrary to the conceptual questions about in-
terface specifications discussed throughout this paper, we
see the vast majority of proof work in this project as using
Coq to emulate, semimanually, domain-specific verification
strategies we would expect to find in layer-specific tools.
1. We experienced performance bottlenecks and inexplicable

tactic failures connected both to logical theories with as-
sociated standard Coq tactics (e.g., linear arithmetic) and
those without (e.g., bitvectors, finite maps, sequences).
Tools like SMT-solver bridges to Coq [11, 15] crashed or
ran too slowly on too many of our goals (even months
after reporting issues to their authors) to be viable.

2. This code base’s level of parameterization (as sketched in
section 6) posed challenges for integrating with automa-
tion. We defined hierarchies of record types for collecting
parameters, often leading to multiple ways of writing a
lookup of the same parameter, though Coq’s automation
failed to take seamless advantage of those equalities.

3. Sometimes we coded workarounds in Coq’s Ltac language,
revealing some apparently fundamental bottlenecks in

PLDI ’21, June 20–25, 2021, Virtual, Canada Andres Erbsen, Samuel Gruetter, Joonwon Choi, Clark Wood, and Adam Chlipala

core parts of Coq today: time scaling in number of hy-
potheses (leading us to invest in heuristics to prune hy-
potheses unlikely to help), unpredictable and slow unifi-
cation (we found ourselves often wanting to trigger the
most basic but fast heuristics), and rechecking of proof
terms at the end of a proof (many tactics do poor jobs of
recording term-reduction strategies in proof terms).
One notable bright side was Coq’s evolving notationmech-

anism, improving in the course of this project as we sent
feature requests to the Coq developers, to the point where
we can now write fairly natural-looking C-like code directly
within Coq (conveniently located alongside its proof).

7.3.2 What if our Wishlist Were Addressed Fully?
But what if all these problems were solved, and Coq also had
access to layer-specific tools such as performant symbolic-
execution engines and theory solvers that are already suc-
cessfully used in many unintegrated verification projects?
We tried to answer this question with Table 4, by classifying
the source lines of proofs manually into “interesting proof”
and “low-insight proof.” The hypothetical improved proof
assistant would only need the former. The large differences
in the factors in the two last columns suggest that with the
current state of the art, the complexity of formal-systems
verification is mostly accidental complexity caused by tool-
ing issues and only a small amount of inherent complexity,
so that improving proof assistants would be a key enabler
for larger projects in the direction explored in this paper. In a
sense, it is a chicken-and-egg problem: to motivate improve-
ment of proof assistants, we need convincing system demos,
preferably much larger than the one presented in this paper,
but in order to create such demos, we already need better
proof assistants. We hope that this paper can make a contri-
bution in breaking this cyclic dependency by highlighting
the potential benefits of improving proof assistants and their
libraries and performance, motivating further development
of these tools.

8 Conclusion
We presented another step toward more complete end-to-
end mechanized proof of systems combining software and
hardware, with small trusted code bases. Since our top-level
theorem does not reference any of the intermediate specifi-
cations, we can rule out a large class of potential integration
bugs.
In order to focus on this kind of integration verification,

we chose rather simple designs for the individual compo-
nents, so the work we presented here cannot yet fully answer
the question how our technique would scale if we replaced
the individual components by more complex designs. More
complex designs would likely lead to more complex interme-
diate specifications, and since we have not yet encountered
any friction points in our specification style, we believe that
it is ready for use with more complex designs that need

features such as direct memory access or, more generally,
external calls that acquire and release logical ownership of
memory. On the other hand, concurrent software execution
(on multiple cores or in interrupt handlers) would require
considerable changes to our current approach. As far as the
proofs (rather than specifications) are concerned, we already
did encounter scalability issues (section 7.3.1), but as we
described, we believe that these are not fundamental.
Compared to past work, we emphasize building a free-

standing digital system that uses realistic I/O, an instruction
set that is already widely used, and low-level coding pat-
terns representative of embedded systems. New challenges
were raised for modularity of both the vertical (layering)
and horizontal (parameterization) kinds. We also found that
tooling challenges with performant proof automation in
Coq dominated our development time, feeding a wishlist
of mundane-sounding Coq improvements. It seems that
these limitations must first be overcome to attain feasibil-
ity for any integration-verification case study large enough
to benefit genuinely from a modular architecture. Still, we
were able to complete the last conceptual ingredients in an
end-to-end functional-correctness theorem that directly cap-
tures the I/O behavior of a very simple untethered embedded
system.

Acknowledgments
This work was supported in part by the Internet Policy Re-
search Initiative at MIT and by National Science Foundation
grant CCF-1521584, for the Expedition on the Science of
Deep Specification. We thank Frédéric Besson and Hugo
Herbelin for their work on Coq arithmetic proof automation
and parsing mechanisms, including implementing several
improvements and fixes in response to our experience in this
project. We thank John Grosen and Adam Suhl for helping us
with buffer-overflow exploitation and initial LAN9250 bring-
up respectively. For comments on drafts of the paper, we
thank Eric Atkinson, Lennart Beringer, Tej Chajed, Wolfgang
Paul, Jade Philipoom, Jaagup Repän, Peter Schmidt-Nielsen,
Gordon Stewart, and Daniel Ziegler.

References
[1] Eyad Alkassar, Mark A. Hillebrand, Steffen Knapp, Rostislav Rusev,

and Sergey Tverdyshev. 2007. Formal Device and Programming Model
for a Serial Interface. In Proceedings of 4th International Verification
Workshop in Connection with CADE-21, Bremen, Germany, July 15-16,
2007 (CEUR Workshop Proceedings, Vol. 259), Bernhard Beckert (Ed.).
CEUR-WS.org. http://ceur-ws.org/Vol-259/paper04.pdf.

[2] Eyad Alkassar, Mark A. Hillebrand, Dirk Leinenbach, Norbert W.
Schirmer, and Artem Starostin. 2008. The Verisoft Approach to Systems
Verification. In 2nd IFIP Working Conference on Verified Software: Theo-
ries, Tools, and Experiments (VSTTE’08) (LNCS, Vol. 5295), Natarajan
Shankar and Jim Woodcock (Eds.). Springer, 209–224.

[3] Andrew W. Appel. 2014. Program Logics - for Certified Compilers.
Cambridge University Press. https://www.cs.princeton.edu/~appel/
papers/plcc.pdf

http://ceur-ws.org/Vol-259/paper04.pdf
https://www.cs.princeton.edu/~appel/papers/plcc.pdf
https://www.cs.princeton.edu/~appel/papers/plcc.pdf

Integration Verification across Software and Hardware for a Simple Embedded System PLDI ’21, June 20–25, 2021, Virtual, Canada

[4] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer,
David Biancolin, Christopher Celio, Henry Cook, Daniel Dabbelt, John
Hauser, Adam Izraelevitz, Sagar Karandikar, Ben Keller, Donggyu Kim,
John Koenig, Yunsup Lee, Eric Love, Martin Maas, Albert Magyar,
Howard Mao, Miquel Moreto, Albert Ou, David A. Patterson, Brian
Richards, Colin Schmidt, Stephen Twigg, Huy Vo, and Andrew Water-
man. 2016. The Rocket Chip Generator. Technical Report UCB/EECS-
2016-17. EECS Department, University of California, Berkeley. http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

[5] William R. Bevier, Warren A. Hunt, Jr., J. Strother Moore, and
William D. Young. 1989. An approach to systems verification. J. Au-
tom. Reasoning (1989), 411–428. https://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.68.6467&rep=rep1&type=pdf

[6] Karthikeyan Bhargavan, Barry Bond, Antoine Delignat-Lavaud, Cé-
dric Fournet, Chris Hawblitzel, Catalin Hritcu, Samin Ishtiaq, Markulf
Kohlweiss, Rustan Leino, Jay R. Lorch, Kenji Maillard, Jianyang Pan,
Bryan Parno, Jonathan Protzenko, Tahina Ramananandro, Ashay Rane,
Aseem Rastogi, Nikhil Swamy, Laure Thompson, Peng Wang, Santi-
ago Zanella Béguelin, and Jean Karim Zinzindohoue. 2017. Everest: To-
wards a Verified, Drop-in Replacement of HTTPS. In 2nd Summit on Ad-
vances in Programming Languages, SNAPL 2017, May 7-10, 2017, Asilo-
mar, CA, USA (LIPIcs, Vol. 71), Benjamin S. Lerner, Rastislav Bodík, and
Shriram Krishnamurthi (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 1:1–1:12. https://oadoi.org/10.4230/LIPIcs.SNAPL.2017.1

[7] Thomas Bourgeat, Ian Clester, Andres Erbsen, Samuel Gruetter, An-
drewWright, and AdamChlipala. 2021. AMultipurpose Formal RISC-V
Specification. arXiv:2104.00762 [cs.LO]

[8] Joachim Breitner, Antal Spector-Zabusky, Yao Li, Christine Rizkallah,
John Wiegley, and Stephanie Weirich. 2018. Ready, Set, Verify! Ap-
plying Hs-to-Coq to Real-World Haskell Code (Experience Report).
Proc. ACM Program. Lang. 2, ICFP, Article 89 (July 2018), 16 pages.
https://oadoi.org/10.1145/3236784

[9] HongxuCai, Zhong Shao, andAlexander Vaynberg. 2007. Certified Self-
Modifying Code. In Proceedings of the 28th ACM SIGPLAN Conference
on Programming Language Design and Implementation (San Diego,
California, USA) (PLDI ’07). Association for Computing Machinery,
NewYork, NY, USA, 66–77. https://oadoi.org/10.1145/1250734.1250743

[10] Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman,
Adam Chlipala, and Arvind. 2017. Kami: A Platform for High-
level Parametric Hardware Specification and Its Modular Verification.
Proc. ACM Program. Lang. 1, ICFP, Article 24 (Aug. 2017), 30 pages.
https://oadoi.org/10.1145/3110268

[11] Łukasz Czajka and Cezary Kaliszyk. 2018. Hammer for Coq: Automa-
tion for Dependent Type Theory. Journal of Automated Reasoning 61,
1-4 (June 2018), 423–453. https://oadoi.org/10.1007/s10817-018-9458-4

[12] Matthias Daum, Norbert W. Schirmer, and Mareike Schmidt. 2010.
From operating-system correctness to pervasively verified applica-
tions. In Proc. IFM. Springer-Verlag, 105–120. https://hal.inria.fr/inria-
00524575/document

[13] George Dunlap. 2012. The Intel SYSRET privilege escalation. https:
//xenproject.org/2012/06/13/the-intel-sysret-privilege-escalation/.

[14] Alex Dzyoba. 2014. A tale about data corruption, stack and red zone.
https://alex.dzyoba.com/blog/redzone/.

[15] Burak Ekici, Alain Mebsout, Cesare Tinelli, Chantal Keller, Guy Katz,
Andrew Reynolds, and Clark Barrett. 2017. SMTCoq: A Plug-In for
Integrating SMT Solvers into Coq. In Computer Aided Verification,
Rupak Majumdar and Viktor Kunčak (Eds.). Vol. 10427. Springer In-
ternational Publishing, 126–133. https://homepage.divms.uiowa.edu/
~tinelli/papers/EkiEtAl-CAV-17.pdf

[16] M. Anton Ertl. 2015. What every compiler writer should know
about programmers or “Optimization” based on undefined behaviour
hurts performance. http://www.complang.tuwien.ac.at/kps2015/
proceedings/KPS_2015_submission_29.pdf

[17] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan
Parno. 2017. Komodo: Using Verification to Disentangle Secure-
Enclave Hardware from Software. In Proceedings of the 26th Sym-
posium on Operating Systems Principles (Shanghai, China) (SOSP
’17). Association for Computing Machinery, New York, NY, USA,
287–305. https://www.microsoft.com/en-us/research/wp-content/
uploads/2017/10/komodo.pdf 10.1145/3132747.3132782.

[18] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao,
Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong Zhang, and Yu
Guo. 2015. Deep Specifications and Certified Abstraction Layers. In
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL ’15). Association for
Computing Machinery, Mumbai, India, 595–608. https://flint.cs.yale.
edu/flint/publications/dscal.pdf 10.1145/2676726.2676975.

[19] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Wu, Jieung Kim, Vil-
helm Sjöberg, and David Costanzo. 2016. CertiKOS: An Extensible
Architecture for Building Certified Concurrent OS Kernels. In Proceed-
ings of the 12th USENIX Conference on Operating Systems Design and
Implementation (Savannah, GA, USA) (OSDI’16). USENIX Association,
USA, 653–669. https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/gu

[20] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan
Parno, Danfeng Zhang, and Brian Zill. 2014. Ironclad Apps: End-to-
End Security via Automated Full-System Verification. In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 14).
USENIX Association, Broomfield, CO, 165–181. https://www.usenix.
org/conference/osdi14/technical-sessions/presentation/hawblitzel

[21] Warren A. Hunt. 1989. Microprocessor Design Verification. http:
//www.cs.utexas.edu/users/boyer/ftp/cli-reports/048.pdf

[22] SiFive Inc. 2019. SiFive FE310-G000 Manual (v3p1). Available under
“Freedom E310-G000” at https://www.sifive.com/documentation as of
2020-05-16.

[23] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon
Winwood. 2009. SeL4: Formal Verification of an OS Kernel. In Pro-
ceedings of the ACM SIGOPS 22nd Symposium on Operating Systems
Principles (Big Sky, Montana, USA) (SOSP ’09). Association for Comput-
ing Machinery, New York, NY, USA, 207–220. https://ts.data61.csiro.
au/publications/nicta_full_text/3783.pdf 10.1145/1629575.1629596.

[24] Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, Wolf
Honoré, William Mansky, Benjamin C. Pierce, and Steve Zdancewic.
2019. From C to Interaction Trees: Specifying, Verifying, and Testing
a Networked Server. In Proceedings of the 8th ACM SIGPLAN Interna-
tional Conference on Certified Programs and Proofs (Cascais, Portugal)
(CPP 2019). Association for Computing Machinery, New York, NY, USA,
234–248. https://oadoi.org/10.1145/3293880.3294106

[25] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott
Owens. 2014. CakeML: A Verified Implementation of ML. In Pro-
ceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (San Diego, California, USA) (POPL ’14).
Association for Computing Machinery, New York, NY, USA, 179–
191. https://ts.data61.csiro.au/publications/nicta_full_text/7494.pdf
10.1145/2535838.2535841.

[26] Adam Langley. 2016. memcpy (and friends) with NULL pointers.
https://www.imperialviolet.org/2016/06/26/nonnull.html.

[27] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun.
ACM 52, 7 (2009), 107–115. http://xavierleroy.org/publi/compcert-
CACM.pdf

[28] Xavier Leroy. 2009. A Formally Verified Compiler Back-End. Journal
of Automated Reasoning 43, 4 (Dec. 2009), 363–446. https://oadoi.org/
10.1007/s10817-009-9155-4

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.68.6467&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.68.6467&rep=rep1&type=pdf
https://oadoi.org/10.4230/LIPIcs.SNAPL.2017.1
https://arxiv.org/abs/2104.00762
https://oadoi.org/10.1145/3236784
https://oadoi.org/10.1145/1250734.1250743
https://oadoi.org/10.1145/3110268
https://oadoi.org/10.1007/s10817-018-9458-4
https://hal.inria.fr/inria-00524575/document
https://hal.inria.fr/inria-00524575/document
https://xenproject.org/2012/06/13/the-intel-sysret-privilege-escalation/
https://xenproject.org/2012/06/13/the-intel-sysret-privilege-escalation/
https://alex.dzyoba.com/blog/redzone/
https://homepage.divms.uiowa.edu/~tinelli/papers/EkiEtAl-CAV-17.pdf
https://homepage.divms.uiowa.edu/~tinelli/papers/EkiEtAl-CAV-17.pdf
http://www.complang.tuwien.ac.at/kps2015/proceedings/KPS_2015_submission_29.pdf
http://www.complang.tuwien.ac.at/kps2015/proceedings/KPS_2015_submission_29.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/10/komodo.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/10/komodo.pdf
https://flint.cs.yale.edu/flint/publications/dscal.pdf
https://flint.cs.yale.edu/flint/publications/dscal.pdf
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/hawblitzel
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/hawblitzel
http://www.cs.utexas.edu/users/boyer/ftp/cli-reports/048.pdf
http://www.cs.utexas.edu/users/boyer/ftp/cli-reports/048.pdf
https://www.sifive.com/documentation
https://ts.data61.csiro.au/publications/nicta_full_text/3783.pdf
https://ts.data61.csiro.au/publications/nicta_full_text/3783.pdf
https://oadoi.org/10.1145/3293880.3294106
https://ts.data61.csiro.au/publications/nicta_full_text/7494.pdf
https://www.imperialviolet.org/2016/06/26/nonnull.html
http://xavierleroy.org/publi/compcert-CACM.pdf
http://xavierleroy.org/publi/compcert-CACM.pdf
https://oadoi.org/10.1007/s10817-009-9155-4
https://oadoi.org/10.1007/s10817-009-9155-4

PLDI ’21, June 20–25, 2021, Virtual, Canada Andres Erbsen, Samuel Gruetter, Joonwon Choi, Clark Wood, and Adam Chlipala

[29] Andreas Lööw, Ramana Kumar, Yong Kiam Tan, Magnus O Myreen,
Michael Norrish, Oskar Abrahamsson, and Anthony Fox. 2019. Ver-
ified compilation on a verified processor. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation. 1041–1053. https://cakeml.org/pldi19.pdf

[30] William Mansky, Wolf Honoré, and Andrew W. Appel. 2020. Connect-
ing Higher-Order Separation Logic to a First-Order Outside World. In
Programming Languages and Systems, Peter Müller (Ed.). Springer In-
ternational Publishing, Cham, 428–455. https://oadoi.org/10.1007/978-
3-030-44914-8_16

[31] Kayvan Memarian and Peter Sewell. 2016. What is C in practice? (Cer-
berus survey v2): Analysis of Responses – with Comments. ISO SC22
WG14 N2015. http://www.cl.cam.ac.uk/~pes20/cerberus/analysis-
2016-02-05-anon.txt

[32] Magnus O. Myreen and Michael J. C. Gordon. 2007. Hoare logic for
realistically modelled machine code. In In Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2007), LNCS. Springer-
Verlag, 568–582. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.96.2793

[33] Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina
Torlak, and XiWang. 2019. Scaling Symbolic Evaluation for Automated
Verification of Systems Code with Serval. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles (Huntsville, Ontario,
Canada) (SOSP ’19). Association for Computing Machinery, New York,
NY, USA, 225–242. https://oadoi.org/10.1145/3341301.3359641

[34] Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson,
James Bornholt, Emina Torlak, and Xi Wang. 2017. Hyperkernel:
Push-Button Verification of an OS Kernel. In Proceedings of the 26th
Symposium on Operating Systems Principles (Shanghai, China) (SOSP
’17). Association for Computing Machinery, New York, NY, USA, 252–
269. https://oadoi.org/10.1145/3132747.3132748

[35] C. H. Perleberg and A. J. Smith. 1993. Branch Target Buffer Design
and Optimization. IEEE Trans. Comput. 42, 4 (April 1993), 396–412.
https://oadoi.org/10.1109/12.214687

[36] Jaroslav Ševčík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh
Jagannathan, and Peter Sewell. 2013. CompCertTSO: A Verified Com-
piler for Relaxed-Memory Concurrency. J. ACM 60, 3 (June 2013),

1–50. https://www.cl.cam.ac.uk/~pes20/CompCertTSO/doc/paper-
long.pdf 10.1145/2487241.2487248.

[37] David Shah, Eddie Hung, Clifford Wolf, Serge Bazanski, Dan Gis-
selquist, and Miodrag Milanović. 2019. Yosys+nextpnr: an Open
Source Framework from Verilog to Bitstream for Commercial FPGAs.
arXiv:1903.10407 [cs.DC] 4 page short paper at IEEE FCCM 2019.

[38] Helgi Sigurbjarnarson, Luke Nelson, Bruno Castro-Karney, James Born-
holt, Emina Torlak, and Xi Wang. 2018. Nickel: A Framework for De-
sign and Verification of Information Flow Control Systems. In Proceed-
ings of the 12th USENIX Conference on Operating Systems Design and Im-
plementation (Carlsbad, CA, USA) (OSDI’18). USENIXAssociation, USA,
287–305. https://unsat.cs.washington.edu/papers/sigurbjarnarson-
nickel.pdf

[39] Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W.
Appel. 2015. Compositional CompCert. In Proceedings of the 42nd An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’15). Association for Computing Machinery, Mum-
bai, India, 275–287. https://www.cs.princeton.edu/~appel/papers/
compcomp.pdf 10.1145/2676726.2676985.

[40] Sergey Tverdyshev. 2009. Formal Verification of Gate-Level Computer
Systems. Ph.D. Dissertation. Saarland University. http://www-wjp.cs.
uni-saarland.de/publikationen/Tv09.pdf

[41] Yuting Wang, Pierre Wilke, and Zhong Shao. 2019. An Abstract Stack
Based Approach to Verified Compositional Compilation to Machine
Code. Proc. ACM Program. Lang. 3, POPL, Article 62 (Jan. 2019),
30 pages. https://oadoi.org/10.1145/3290375

[42] Andrew Waterman and Krste Asanovic. 2019. The RISC-V Instruction
Set Manual. https://riscv.org/specifications/.

[43] Arseniy Zaostrovnykh, Solal Pirelli, Rishabh Iyer, Matteo Rizzo, Luis
Pedrosa, Katerina Argyraki, and George Candea. 2019. Verifying
Software Network Functions with No Verification Expertise. In Pro-
ceedings of the 27th ACM Symposium on Operating Systems Principles
(Huntsville, Ontario, Canada) (SOSP ’19). Association for Computing
Machinery, New York, NY, USA, 275–290. https://oadoi.org/10.1145/
3341301.3359647

https://cakeml.org/pldi19.pdf
https://oadoi.org/10.1007/978-3-030-44914-8_16
https://oadoi.org/10.1007/978-3-030-44914-8_16
http://www.cl.cam.ac.uk/~pes20/cerberus/analysis-2016-02-05-anon.txt
http://www.cl.cam.ac.uk/~pes20/cerberus/analysis-2016-02-05-anon.txt
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.96.2793
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.96.2793
https://oadoi.org/10.1145/3341301.3359641
https://oadoi.org/10.1145/3132747.3132748
https://oadoi.org/10.1109/12.214687
https://www.cl.cam.ac.uk/~pes20/CompCertTSO/doc/paper-long.pdf
https://www.cl.cam.ac.uk/~pes20/CompCertTSO/doc/paper-long.pdf
https://arxiv.org/abs/1903.10407
https://unsat.cs.washington.edu/papers/sigurbjarnarson-nickel.pdf
https://unsat.cs.washington.edu/papers/sigurbjarnarson-nickel.pdf
https://www.cs.princeton.edu/~appel/papers/compcomp.pdf
https://www.cs.princeton.edu/~appel/papers/compcomp.pdf
http://www-wjp.cs.uni-saarland.de/publikationen/Tv09.pdf
http://www-wjp.cs.uni-saarland.de/publikationen/Tv09.pdf
https://oadoi.org/10.1145/3290375
https://riscv.org/specifications/
https://oadoi.org/10.1145/3341301.3359647
https://oadoi.org/10.1145/3341301.3359647

	Abstract
	1 Introduction
	2 Related Work and Concepts
	2.1 Integration Verification
	2.2 Automated Symbolic Execution
	2.3 Height of the Verified Stack
	2.4 Verified Software-Hardware Integration

	3 Overview
	3.1 The Trace Predicate

	4 CPS Semantics
	4.1 The Bedrock2 Program Logic
	4.2 Induction on all Executions
	4.3 CPS Semantics for RISC@汥瑀瑯步渠--V

	5 Layers of the Stack
	5.1 The Application Layer
	5.2 The Bedrock2 Source Language
	5.3 The Bedrock2 Compiler
	5.4 The RISC@汥瑀瑯步渠--V ISA and its Formal Semantics
	5.5 The Kami Processor
	5.6 Dealing with Stale Instructions
	5.7 Correctness of the Processor
	5.8 Interfacing Hardware and Software
	5.9 The End-to-End Theorem

	6 Parameterization across Layers
	6.1 I/O in Bedrock2
	6.2 I/O in the ISA Semantics
	6.3 I/O in the Bedrock2 Compiler
	6.4 I/O in Hardware
	6.5 Parameterization: Coq Pragmatics

	7 Evaluation
	7.1 Remaining Opportunities for Bugs
	7.2 Performance
	7.3 Effort

	8 Conclusion
	References

