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We present a prototype for a tool that enables programmers to verify their code as they write it in real-time.
After each line of code that the programmer writes, the tool tells the programmer what it can prove about the
program so far and indicates potential oversights or potentially violated assumptions. Once the programmer
has finished writing the program, it is already verified with a mathematical correctness proof. Other tools
providing real-time feedback already exist, but ours is the first one that only relies on a small trusted proof
checker and that provides a concise summary of all the facts that are provable at the point in the program
currently being edited, as opposed to only indicating whether user-stated assertions or postconditions hold.

Program verification requires loop invariants, which are hard to find and tedious to spell out. We explore a
middle ground in the design space between the two extremes of requiring users to spell out loop invariants
manually and attempting to infer loop invariants automatically: Based on the observation that a loop invariant
often looks quite similar to the symbolic state right before the loop, our tool asks users to express the desired
loop invariant as a diff from the symbolic state before the loop, which has the potential to lead to less verbose
and more maintainable proofs.

We prototyped our technique in the interactive proof assistant Coq, so our framework creates machine-
checked proofs that the developed functions satisfy their specifications when executed according to the
formal semantics of the source language. Using a verified compiler proven against the same source-language
semantics, we can ensure that the behavior of the compiled program matches the program’s behavior as
represented by the framework during the proof. Additionally, since our polyglot source files can be viewed as
Coq or C files at the same time, users willing to accept a bigger trusted code base can compile them with GCC.

Additional Key Words and Phrases: software verification, formal methods, symbolic execution, interactive
proof assistants

1 INTRODUCTION
Software verification has the potential to cut down significantly on bugs in software. In particular,
if one proves that a program implemented in an optimized way in an efficient low-level language
behaves according to a specification written in a high-level specification language, a large class of
bugs can be excluded that could arise from the optimizations or from delicate, performance-minded
design choices of the low-level language.
However, writing proofs about software can be a repetitive task, but fortunately, like many

repetitive tasks, it can be automated by writing programs that perform it. But often, it is hard to
find the right level of automation: One might think that the more automation, the better, but the
more automated a prover is, the more it is at risk of going down a wrong route in its proof search
and wasting time on proof steps that a human could easily recognize as useless. This is because for
a typical nontrivial program, the programmer has some (potentially domain-specific) insight about
its correctness and about what strategies are promising to try, but the verification tool might not
have this knowledge. An important question is therefore (a) how the users can convey their insight
to the verifier. Equally important, but often neglected, is the opposite direction, i.e. (b) how the
verifier can convey everything it knows to the user. This feature can be useful in two ways: If, while
the user is writing a program, the verifier constantly provides a concise summary of everything it
knows to be true at the current cursor position (also known as a symbolic state), this summary
can help the user decide whether the program is correct to that point, and it can hint at what the
right next command in the program might be. And if the verifier fails to verify some side condition
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that is required for an instruction to be safe (for example, that an array index is within bounds), by
looking at this summary of everything that the verifier knows, the user can guess more quickly
why the verifier failed.

Our answer to (a) is to use Coq’s tactic language Ltac both to implement the verifier and as the
language in which users express their domain-specific insights, which leads to a smooth cooperation
between the two, and our answer to (b) is to use Coq’s proof-goal display (which consists of a list
of hypotheses that can be assumed and a conclusion that has to be proven) to display the current
symbolic state of the program that the user is writing. A peculiarity of our methodology is that we
combine foundational guarantees (all programs have proofs checked by Coq’s usual kernel) with
novel usability affordances, of the kind associated with newfangled IDEs, though implemented on
top of tools that are distinctly not newfangled: unmodified Coq and Emacs (with Proof General).

In other words, we take seriously a perhaps peculiar-sounding goal: can writing C programs
entirely within Coq source files be made even more streamlined and productive than
using mainstream IDEs? We start with some “clever tricks” to allow single source files to be
accepted as legal code in both Coq and C, where interactive proof scripts appear amidst lines of
normal C code. Then we start adding features that take advantage of the proof assistant, providing
snapshots of “just right” complexity, covering what is known about all possible program states
at particular code points. Along the way, we develop ideas that may mitigate some of the classic
usability challenges of verification with Hoare logics, like the need to invent loop invariants out of
whole cloth.

More specifically, we make the following contributions:

• We present a prototype of a framework that supports symbolic live debugging of (a subset
of) C. It runs entirely within the Coq proof assistant and produces ASTs of the functions’
source code as objects in Coq, together with a correctness lemma for each function. Our
tool’s correctness need not be trusted, because it produces proofs that are verified by Coq’s
kernel, so only Coq’s kernel needs to be trusted. The correctness lemmas are expressed in
terms of Bedrock2’s source-language semantics [Erbsen et al. 2021], so our programs can be
compiled with Bedrock2’s verified RISC-V compiler.

• Most software-verification tools require users to provide loop invariants, which can become
quite long and tedious to write down. We present a way to express loop invariants as a diff
from the inferred symbolic state at the beginning of the loop (§ 3.1.7 and § 3.5.1). Using some
tactics, users can generalize and/or strengthen the symbolic state, and our framework can
then use this modified symbolic state as the loop invariant. So, with our solution, the user still
needs to provide the insight that leads to a suitable loop invariant, but it is not necessary to
spell out the whole loop invariant. This solution potentially leads to an easier, more intuitive,
and more enjoyable user experience and to proofs that are more robust against code changes,
because diffs (edits) tend to be smaller than whole invariants.

• By centering our automation of side-condition solving around the notion of safe steps (§ 3.5.5),
i.e. proof steps that do not turn provable goals into unprovable goals, and providing users with
means to register domain-specific proof steps, we can write proofs that rely on backtracking
only very locally and thus are both automated and easy to debug at the same time.

• For convenience, if one is willing to trust our tool’s notation-based parser, our polyglot Coq
source files can also be viewed as C files and be compiled with GCC, or if one is willing to
trust Bedrock2’s C pretty-printer, one can pretty-print the ASTs to C and use this alternative
route for compiling code with an unverified C compiler (§ 3.2).

• We provide a small but promising set of functions that we developed and verified using our
framework (§ 6).
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1 (* -*- eval: (load-file "../LiveVerif/live_verif_setup.el"); -*- *)

2 Require Import LiveVerif.LiveVerifLib.

3 Load LiveVerif.

4 #[export] Instance spec_of_memset: fnspec := .**/

5
6 void memset(uintptr_t a, uintptr_t b, uintptr_t n) /**#

7 ghost_args := bs (R: mem→ Prop);

8 requires t m := <{ * array (uint 8) \[n] bs a

9 * R }> m ∧
10 \[b] < 2 ^ 8;

11 ensures t' m' := t' = t ∧
12 <{ * array (uint 8) \[n] (List.repeatz \[b] \[n]) a

13 * R }> m' #**/ /**.

14 Derive memset SuchThat (fun_correct! memset) As memset_ok. .**/

15 { /**. .**/

16 uintptr_t i = 0; /**.···.**/
22 while (i < n) /* decreases (n ^- i) */ { /**. .**/

23 store8(a + i, b); /**. .**/

24 i = i + 1; /**. .**/

25 } /**. .**/

26 } /**. Qed.

27 End LiveVerif. Comments .**/ //.

Fig. 1. memset example, as displayed in Emacs, with lines 5 of Ltac (lines 17-21) folded away into ···

1.1 A First Glance At an Example
Figure 1 shows an example of a verified memset function. The file is a Coq file, but if we prefix it
with an opening C comment /*, it becomes a C file. Lines 15 to 26 look like C code, but are in fact
just notations for proof tactics that gradually build the abstract syntax tree (AST) of the function,
along with its correctness proof. The proof is completely automated, except for 5 lines of tactic
code (lines 17-21, shown in Figure 2c) that express the desired loop invariant as a diff from the
symbolic state before the loop. We will discuss this example in more detail in § 3.1, but first provide
some background in § 2.

2 BACKGROUND
This section provides some background to make the paper accessible to readers without prior
knowledge of proof assistants, Coq, or program verification inside proof assistants. For each
subsection, it should be safe to decide whether to skip it based on its title.

2.1 Editing Coq Proofs: Proof Goals and the Proof Cursor
The central notion for interactive proof development in Coq is that of a proof goal. On paper, we
write proof goals as Γ ⊢ 𝑃 , where Γ is a list of variables and hypotheses that can be assumed, and
𝑃 is the conclusion to be proven. In the actual Coq implementation, each variable and hypothesis is
printed on a separate line, and the ⊢ is printed as a horizontal line (for example, see Figure 2a & b).
ProofGeneral is an Emacs extension for developing Coq proofs. For each Coq file being edited,

it shows three windows: a window for the file itself, a window for the current proof goals, and a
window to display error messages. In addition to the regular text-editing cursor, the file window
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also has a proof cursor that can be moved forward and backward using separate key bindings (or
GUI buttons), and the proof-goal window always displays the proof goals that remain open at the
current position of the proof cursor. If a proof contains an error, ProofGeneral ensures that the
proof cursor can never be advanced past that error.

We will see in § 3.1 how we can repurpose the proof-goal window to serve as a debugger window
displaying the symbolic values of all variables and memory, and how the proof cursor can be seen
as the indicator of a debugger pointing to the next instruction to be executed.

2.2 Evars in Coq: Lazily Instantiated Existential Variables
While writing proofs in Coq, it is sometimes desirable to delay choosing some value until a later
point where the updated proof goal makes it more obvious what the right choice for that value is.
For example, if we have the proof goal 𝑎 : Z, 𝑏 : Z, 𝑐 : Z, 𝐻1 : 𝑎 < 𝑏, 𝐻2 : 𝑐 > 𝑏 ⊢ 𝑎 < 𝑐 and want
to apply the lemma Z.lt_trans, which says ∀ 𝑛 𝑚 𝑝. 𝑛 < 𝑚 ⇒𝑚 < 𝑝 ⇒ 𝑛 < 𝑝 , Coq can infer (by
unifying the lemma’s conclusion with the goal’s conclusion) that 𝑛 has to be instantiated to 𝑎 and
𝑝 to 𝑐 , but it is not immediately clear what value𝑚 should be instantiated with. So either the user
has to provide it explicitly by running the tactic apply Z.lt_trans with (𝑚 := 𝑏), which results
in two subgoals with the same hypotheses as the original goal and conclusions 𝑎 < 𝑏 and 𝑏 < 𝑐

respectively; or the user can delay the choice of𝑚 by running eapply Z.lt_trans. The eapply tactic
is a variant of the apply tactic that creates so-called evars (short for existential variables) for values
that cannot be determined yet. On this example, it results in two subgoals with conclusions 𝑎 < ?𝑚
and ?𝑚 < 𝑐 , respectively, where the question mark is used to mark𝑚 as an evar, i.e. as some hole
whose value will be determined later. Note that the two occurrences of ?𝑚 in the two subgoals
are linked: As soon as ?𝑚 is instantiated to some value in one goal, it is also instantiated to the same
value in the other goal. To continue the example, one could now run the eassumption tactic on the
first goal, which applies any assumption from the list of hypotheses that matches the conclusion.
The e at the beginning of the tactic’s name means that it can instantiate evars in order to unify a
hypothesis with the conclusion, so it will pick 𝐻1 and instantiate ?𝑚 to 𝑏.

2.3 A Use-Case of Evars: Deriving a Definition Based on its Proof
Coq’s Derive command can be used to create a definition and a proof about it at the same time. For ex-
ample, if we want to define a list myList such that it contains (at least) 1 and 2 as its elements, we can
start with the the command Derive myList SuchThat (In 1 myList ∧ In 2 myList) As my_property.
It starts the definition of a list named myList, along with a lemma named my_property. Note that the
definition of myList is not yet given at this point and will only be filled in gradually while writing the
proof. This command creates an evar ?myList for the definition being made and opens the proof goal
⊢ In 1 ?myList ∧ In 2 ?myList. Using the split tactic turns it into two goals, ⊢ In 1 ?myList

and ⊢ In 2 ?myList. Given the lemma in_eq which says ∀ (A : Type) (a : A) (l : list A),

In a (cons a l), we can run eapply in_eq on the first subgoal, which unifies the conclusion of
that lemma with In 1 ?myList. This step partially instantiates the evar ?myList, namely to the
value (cons 1 ?l), which in turn contains a new evar ?l. Therefore, the second subgoal now be-
comes ⊢ In 2 (cons 1 ?l). Then, the proof can be completed by applying in_cons which says
that ∀ (A : Type) (a b : A) (l : list A), In b l ⇒ In b (cons a l), leading to ⊢ In 2 ?l

and then applying in_singleton : ∀ (A : Type) (x : A), In x (cons x nil), which instantiates
the remaining evar ?l to the singleton list containing just 2.
So, through this series of proof steps, the list myList was defined to be (cons 1 (cons 2 nil))

solely based on its proof, without ever having to spell out this term as a whole.
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3 USER INTERFACE
3.1 Overview by an Example
This subsection gives an overview of our approach by means of a detailed discussion of the sample
program in Figure 1.

3.1.1 Polyglot Source File Can be Read as C or Coq at the Same Time [Lines 1-27]. The code in
Figure 1 is a Coq file accepted by unmodified Coq 8.17.1. By (ab)using Coq’s notation system, we
can insert program snippets that look like C code. If the file is preceded by our framework-specific
C header and an opening C comment, it becomes a C file that can be compiled with GCC.

3.1.2 Function Signature Using Only One Type [Line 6]. Since we only support the subset of C
that is also supported by Bedrock2, all variables have the same type, namely uintptr_t (defined
in stdint.h). According to the standard, that is an unsigned integer type large enough to hold a
pointer value, but we rely on the observation that in practice, compiler implementations define it
as 32-bit and 64-bit unsigned int on 32-bit and 64-bit machines, respectively.

3.1.3 Specifications Using Separation Logic and Z [Lines 7-13]. The C signature is followed by a
function specification enclosed in a /**# #**/ comment that lists ghost arguments, a precondition
over the initial event trace t and the initial memory m, and a postcondition over the final event
trace t' and final memory m'. The parts between <{ }> are separation-logic assertions. We use *

symbols as bullet points for lists of separation-logic clauses to be joined by separating conjunction,
so * can also be read as the traditional star operator from separation logic, just with the additional
liberty of allowing a series of separating conjunctions to start with a superfluous initial *. The
array predicate takes as arguments the predicate for its elements (uint 8), followed by its number
of elements, its list of elements, and its start address.
To make our specifications as trustworthy as possible, we need to avoid accidential integer

overflows in the specifications, so we generally use unbounded integers (Z) in our specifications
rather than bounded integers (word), except in situations with many bitwise operations and where
integer overflow is the desired outcome. Therefore, we often need to interpret bounded integers
(values that were computed by our programs) as unbounded integers in order to mention them
in specifications. To interpret a word value x as an unsigned Z, we use the notation \[x] (which
expands to the word.unsigned function), and there is also a word.signed function (for which we
have not yet invented a notation because we use it less frequently). The reverse direction, coercing
a Z into a word, does not need to distinguish between signed and unsigned integers, because in both
cases, it simply takes the 32 least significant bits of the unbounded integer’s binary representation
(where a negative number is considered to start with an infinite series of 1s on the left). We call
this coercion word.of_Z and abbreviate it with /[x], but since it drops the more significant bits, we
try to use it as little as possible.

3.1.4 The Initial Proof Goal [Line 14]. We use Coq’s Derive1 command (§ 2.3) to start the correctness
proof of a function that has not yet been defined but will be defined at the same time as we write the
proof. The Derive command opens a proof goal which could be summarized, using the notation from
§ 2.1, as ⊢ 𝑃 (𝑡, 𝑠,𝑚) → wp (𝑡, 𝑠,𝑚) ?𝑏𝑜𝑑𝑦 𝑄 , where 𝑃 stands for the precondition from lines 8-10,
𝑄 stands for the postcondition from lines 11-13, and ?𝑏𝑜𝑑𝑦 is an evar (§ 2.2) acting as a placeholder
for the function body that is going to be defined. The state triple (𝑡, 𝑠,𝑚) contains an event trace 𝑡 ,
a partial mapping 𝑠 from variable names to values, and a memory𝑚. The initial 𝑠 contains just the

1A note for Haskell users: Unlike in Haskell, the Derive keyword in Coq is in no way related to the Instance keyword.
The reason we mark specifications as typeclass instances is explained in § 4.2.
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function arguments, so in this example, it equals map.of_list [|("a", a); ("b", b); ("n", n)|].2
The wp judgment takes an initial state, a command, and a desired postcondition, and tells us what
we have to prove in order to ensure that after running the command on the initial state, the
postcondition holds.3

3.1.5 C Snippets Acting As Proof-Script Steps [Lines 15-26]. Each C snippet is enclosed between a
closing comment .**/ and an opening comment /**., and is actually just a notation for a tactic.
The first proof step, .**/ { /**., introduces the precondition as hypotheses and performs some
setup to start the proof.

3.1.6 Applying Tailored Weakest-Precondition Rules [Lines 16-24]. The assignment on line 16 is
a notation for a tactic that applies the wp rule for assignment. Based on standard wp rules, we
prove another layer of wp rules that is tailored to work well with the proof-automation tactics. For
instance, the rule that gets applied on line 16 is

Lemma wp_set: forall fs x e v t m l rest post,

dexpr1 m l e v (update_locals [|x|] [|v|] l (fun l'⇒ wp_cmd fs rest t m l' post))→
wp_cmd fs (cmd.seq (cmd.set x e) rest) t m l post.

It has a built-in sequence command, so applying it to a wp goal whose command is an evar leaves
behind another evar ?rest for the subsequent commands. Instead of using two separate hypotheses
for the evaluation of the expression e and the remainder of the program ?rest, it uses a judgment
called dexpr1 whose last argument is a proposition that needs to hold after evaluating e, so that
changes to the symbolic state (i.e. changes to the hypotheses of the proof goal) that are made
while evaluating e are also visible to the proof code for the rest of the program. For instance, if the
evaluation of e contained some memory access that treats some byte buffer as a record, the proof
for e will change the corresponding hypothesis from a byte array predicate to a record predicate,
and it is usually desirable to preserve this change for the rest of the program.

The snippet on line 22 applies the following lemma:
Lemma wp_while {measure: Type} (v0: measure) (e: expr) (c: cmd) t (m: mem) l fs rest

(invariant: measure→ trace→ mem→ locals→ Prop) {lt} {post: trace→ mem→ locals→ Prop}:

invariant v0 t m l→
well-founded lt→
(∀ v t m l, invariant v t m l→

∃ b, dexpr_bool3 m l e b

(loop_body_marker (wp_cmd fs c t m l (fun t m l⇒∃ v', invariant v' t m l ∧ lt v' v)))

(pop_scope_marker (after_loop fs rest t m l post))

True)→
wp_cmd fs (cmd.seq (cmd.while e c) rest) t m l post.

It contains some markers such as loop_body_marker, pop_scope_marker, and after_loop (an alias
of wp_cmd) that inform the tactics what to do. It uses a judgment called dexpr_bool3, whose last three
arguments are propositions that need to hold in case the Boolean b obtained from evaluating the

2Note that for list literals, we use the notation [|x; y; z|] instead of Coq’s standard notation [x; y; z], because we
want to use bracket notation to index into lists, so the term f [b] would become ambiguous: It could be the application of
function f to the singleton list containing b, or it could be the b-th element of list f. We experimented with type-based
operator overloading (§ 5.2), but it did not seem worth the trouble.
3Note that even though weakest-precondition generators are often presented as threading a postcondition through a
program backwards, we can actually also use them to step through a program in forward direction – we just need to evaluate
the weakest-precondition generator under normal-order evaluation (i.e. left-to-right) instead of the standard call-by-value
order where arguments get evaluated first.
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state : currently displaying

... 6 lines of section vars omitted ...

fs : list (string * func)

fs_ok : functions_correct fs ?Goal

Scope0 : ____ FunctionParams ____

a, b, n : word

bs : list Z

R : mem→ Prop

Scope1 : ____ FunctionBody ____

t : trace

i : word

m, m0, m1 : mem

H0 : m0 |= array (uint 8) \[n] bs a

H1 : m1 |= R

D : m0 \*/ m1 = m

Hp1 : \[b] < 2 ^ 8

Def0 : i = /[0]

============================

ready

(a) Symbolic state (proof goal) after processing
the first line of the function body in Figure 1

state : currently displaying

... 6 lines of section vars omitted ...

fs : list (string * func)

fs_ok : functions_correct fs ?Goal

Scope0 : ____ FunctionParams ____

a, b, n : word

bs : list Z

R : mem→ Prop

Scope1 : ____ FunctionBody ____

t : trace

Scope2 : ____ LoopInvOrPreOrPost ____

i : word

m, m0, m1 : mem

H0 : m0 |= array (uint 8) \[n]

(List.repeatz \[b] \[i] ++ bs[\[i]:]) a

H1 : m1 |= R

D : m0 \*/ m1 = m

Hp1 : \[b] < 2 ^ 8

============================

ready

(b) Symbolic state (proof goal) after processing
the Ltac code in (c)

17 swap bs with

18 (List.repeatz \[b] \[i] ++ bs[\[i]:])

19 in #(array (uint 8)).

20 loop invariant above i.

21 delete #(i = ??).

(c) Snippet of Ltac code that was folded into ··· in
Figure 1. The # notation is used to reference a hy-
pothesis matching a pattern, instead of using its
autogenerated (and thus subject-to-change) name.

fun (measure : word) (ti : trace)

(mi : mem) (li : locals)⇒
exists i : word, ands [|

measure = n ^- i; ti = t;

li = map.of_list [|("a", a); ("b", b);

("i", i); ("n", n)|];

seps [|array (uint 8) \[n]

(List.repeatz \[b] \[i]

++ bs[\[i]:]) a; R|] mi;

\[b] < 2 ^ 8|]

(d) Loop invariant automatically built by packaging
everything below __LoopInvOrPreOrPost__ in (b)

Fig. 2. Loop-invariant definition using a diff script (c) instead of explicitly spelling it out

expression e turns out to be true, false, or either, respectively. For example, a loop searching through
a tree where null pointers are used for leaves might start with while (p && load(p) != key), and
during the evaluation of the condition, in the case where p is non-null, this fact allows us to turn
the memory assertion which says that at p, we either have a leaf or a node into one that says we
certainly have a node at p, and using dexpr_bool3 instead of a simple conjunction that gets split
into separate subgoals allows us to keep this modification visible to the evaluation of the loop body.

3.1.7 Expressing the Loop Invariant as a Diff from the Current Symbolic State [Lines 17-21 in
Figure 2c]. The wp_while lemma requires a loop invariant. Automatically inferring loop invariants
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is a hard problem, and we do not attempt to solve it. But spelling out loop invariants manually is
also quite cumbersome. Therefore, we use an approach in-between these two extremes, based on
the observation that the loop invariant often looks quite similar to the symbolic state just before
the loop. Instead of requiring that the user spells out the whole invariant, we only require that
the user expresses the insight needed to obtain the right invariant, expressed as a tactic script
(Figure 2c) that transforms the symbolic state before the loop (Figure 2a) into a generalized and/or
strengthened symbolic state (Figure 2b) which our framework then mechanically packages into a
loop invariant (Figure 2d).

3.1.8 Heapletwise Separation Logic [Background for Line 23]. It is useful to name each separation-
logic clause and to make it available to Ltac’s match command, which finds hypotheses matching
a given pattern. Therefore, instead of using one big separation-logic clause (P ∗ Q ∗ R) m, we
split it into one hypothesis per clause. This requires explicitly splitting the memory into a heaplet
corresponding to each clause, which takes up some space in the display of the proof goal, but it
can be handled completely automatically and therefore does not affect the user experience too
negatively. This splitting then leads to three new heaplets m0, m1, m2, an equation saying that their
disjoint union equals m, written as m0 \*/ m1 \*/ m2 = m, and three hypotheses P m0, Q m1 and R m2.
To make them more easily recognizable as memory hypotheses, we use the mi |= Pi notation,
which just expands to Pi mi. See for example hypotheses H0, H1, and D in Figure 2a, and compare
them to the precondition of the memset function on line 8 in Figure 1.

3.1.9 AccessingMemory That Is Part of a Bigger Separation-Logic Clause [Line 23]. store8(a + i, b)

stores the lowest 8 bits of b to the i-th element of the array at a. According to the loop invariant,
we have the following separation-logic clause:

H0 : m0 |= array (uint 8) \[n] (List.repeatz \[b] \[i] ++ bs[\[i]:]) a

However, the wp lemma for the store commands (omitted for space reasons) expects a separation-
logic clause with just one (uint 8) element, so we need to split the array appropriately. Our tactics
take care of this automatically, leading to the following three clauses:

H2 : m0 |= array (uint 8) \[i] (List.repeatz \[b] \[i]) a

H3 : m2 |= uint 8 bs[\[i]] (a ^+ i)

H7 : m4 |= array (uint 8) (\[n] - \[i] - 1) bs[\[i] + 1:] (a ^+ i ^+ /[1])

The store then replaces bs[\[i]] with b in H3, and since the splitting tactic posed a hypothesis
that acts as a reminder to merge the three clauses back together later, we end up with the following
clause after the store:
H1 : m |= array (uint 8) \[n] (List.repeatz \[b] \[i] ++ [|\[b]|] ++ bs[\[i] + 1:]) a

3.1.10 Proving That The Current Symbolic State Satisfies Expectations [Lines 25 and 26]. The closing
brace at the end of the loop body creates a proof that the symbolic state obtained by executing
the loop body satisfies the loop invariant again, and the closing brace at the end of the function
body creates a proof that the final symbolic state satisfies the postcondition given on lines 11-13. In
this example, the proofs are found completely automatically, but in more complex examples, the
automation might leave some goals open for the user to prove manually. This completes our tour
of the memset example.

3.2 Tradeoffs Between Three Different Ways of Compiling
Finally, we might also want to compile and run our code. Table 1 compares three different ways of
compiling code that was verified in our framework. The C-parsing notations of our framework
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Feed Coq File to GCC Bedrock2’s
Ugly-Printer & GCC

Bedrock2 Compiler

Readability of
exported code

OK (see e.g. Figure 1) Decipherable (many
casts & parentheses)

It is assembly

Instruction-set
architecture support

Everything supported
by GCC

Everything supported
by GCC

Only RISC-V

Performance of
compiled code

Good Good Bad

Additions to trusted
code base

Notations to parse C
into Bedrock2, GCC,
load/store C header

Bedrock2’s
ugly-printer, GCC,
load/store C header

Only the riscv-coq
specification

Table 1. Different Ways of Compiling

expand to Bedrock2 ASTs, defined as a Coq inductive datatype, so the correctness proofs are
statements about these ASTs. The verified Bedrock2 compiler consumes the sameASTs and is proven
correct against the same semantics as used by our framework, so when it comes to minimizing the
TCB, this is the preferred approach. For better performance and support of ISAs other than just
RISC-V, one can choose to compromise on TCB minimality: If one trusts our notations to parse C
as well as Coq’s implementation of its notation system, one can feed our Coq files (which are also
C files if preceded by our header defining loads and stores and an opening comment /*) to GCC
(and likely also to other C compilers), or if one prefers to trust Bedrock2’s pretty-printer (called
ugly-printer by its author), one gets less readable C code but otherwise similar characteristics.

3.3 Concepts
To better drive separation-logic proof automation and make some expressions more concise, we
introduce a few properties of separation-logic predicates:

3.3.1 Predicate size. Often a separation-logic predicate P occupies some range of memory addresses
and we need to know the length in bytes of that range. Therefore, we define PredicateSize P to
be an alias of Z, mark it as a typeclass, and register hints for each predicate, so that we can use
typeclass search to find the size of a predicate. The predicate (array elemPred n xs a) can then
use an implicit, automatically inferred argument elemSize of type (PredicateSize elemPred), to
state that at address a, we have an array of the n elements in list xs, where the i-th element of xs is
asserted using (elemPred xs[i] (a+i*elemSize)).

3.3.2 Support for adjacent sep clauses: sepapp and sepapps. Often, we want to lay out several
predicates adjacent to each other.4 To avoid having to write out offsets explicitly, we introduce a
new definition that we call separating append, written sepapp P1 P2 addr. It takes two separation-
logic predicates P1 and P2, an implicitly inserted argument P1size of type PredicateSize P1 (which
can be found by typeclass search as explained above), and an address addr, and it is defined as
the separating conjunction P1 addr ∗ P2 (addr ^+ /[P1size]). We also define a sepapps predicate
that takes a list of predicates, infers their sizes, and lays them out adjacently.

3.3.3 𝑛-fillable predicates. We call a predicate 𝑃 𝑛-fillable if for any 𝑛-byte buffer at address 𝑎,
there exists a value 𝑣 such that the predicate 𝑃 𝑣 𝑎 holds. This concept is useful to know whether
we can cast the byte buffer returned by malloc into a predicate 𝑃 .

4So far, we have only considered packed records, so we do not automatically insert spacing to respect alignment constraints.
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Definition node_t(r: node):

word→ mem→ Prop := .**/

typedef struct __attribute__ ((__packed__))

{

uintptr_t data;

uintptr_t next;

} node_t;

/**.

Definition node_t(r: node): word→ mem→ Prop :=

<{ + uintptr (data r)

+ uintptr (next r) }>.

Definition node_t(r: node): word→ mem→ Prop :=

sepapps

(cons (mk_sized_predicate (uintptr (data r)) 4)

(cons (mk_sized_predicate (uintptr (next r)) 4)

nil)).

Fig. 3. Three equivalent definitions, using different notations

3.4 Features
3.4.1 Record Predicates. Given a Coq record type for nodes of singly linked lists defined as
Record node := { data: word; next: word }, we want to create a separation-logic predicate called
node_t which asserts that at a given address, a representation of a given node record is found.
Using sepapps and some custom notations, we can define a predicate that looks like a C struct

definition (first definition in Figure 3). The two other definitions in that Figure express the same
predicate but using a notation for sepapps or sepapps directly, respectively.

3.4.2 IDE extensions. Our framework can be used in any IDE for Coq. However, there are three
very common operations for which we implemented keyboard shortcuts in 40 lines of Emacs Lisp:
Showing/hiding of the Ltac block under the cursor (i.e. folding tactics into ···), inserting spaces until
the end of line followed by a C-closing/Ltac-opening marker /**. and then processing the line, and
inserting and processing one step command (§ 3.5.5).

3.5 Techniques
3.5.1 Expressing a Loop Invariant as a Diff from the Current Symbolic State. Before each loop, the
user of our framework must turn the symbolic state into a shape that our framework can use as a
loop invariant. The example in Figure 2 should be helpful to illustrate the general process that we
are going to explain in detail now. All modifications are expressed in Ltac and are of two kinds:

The first is that the user needs to separate variables and hypotheses that remain unchanged during
the loop from those thatmay change during the loop, by using the command loop invariant above x,
where x is the name of a variable or hypothesis. This command adds a LoopInvOrPreOrPost

marker above x to separate unchanged (above) from changing (below) variables and hypothe-
ses. After adding this marker, the user can use Coq’s builtin Ltac commands move x before y and
move x after y to move hypotheses and variables up and down, until each is on the correct side
of the separating marker. The variables below the marker will turn into existentials in the loop
invariant, and the hypotheses will turn into a big conjunction (expressed as ands [|...|]). The
variables and hypotheses above the marker do not appear in the loop invariant, except that the local
variables above the marker are asserted to keep that value throughout the loop, and the hypotheses
naturally remain available during the proof of the loop body without requiring further intervention.
The second kind of modification is related to generalizing the state. For instance, a variable i

that equals one particular value before the loop might need to be generalized to be within a range
by prove (0 ≤ i < n); and by delete #(i = ??), which finds the first hypothesis of shape i = ??

and deletes it. Other common modifications of this kind include viewing a list of unprocessed items
as the concatenation of an empty processed list and a remainder of unprocessed items, and then
forgetting that the unprocessed and processed list are the empty and whole list, respectively. A
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similar example is also in Figure 2c, where we replace the list bs of initial garbage data by the
concatenation of repeating \[b] zero times (zero being the initial value of i) and the suffix of bs
starting at i. And finally, it is sometimes also needed to introduce additional variables, so that a
value that happens to be the same in two hypotheses can differ during the loop, which can be
achieved using the pose (a := b) command, and change b with a in H, and finally, clearbody a

to forget that a equals b.

3.5.2 Treating While Loops as Tail-Recursive Calls. Certain loops can be more easily verified by
viewing them as tail-recursive functions with pre- and postconditions parameterized over ghost
variables [Tuerk 2010]. Before each loop iteration, the precondition must hold, and at the end of
the loop body, one has to show that the current state implies the precondition with smaller ghost
variables, and one also has to show that the postcondition with small ghost variables implies the
postcondition with bigger ghost variables.

For instance, when iterating over a data structure, the ghost variables can include a representation
of the data structure and a frame, and the former shrinks with each iteration, while the latter grows
with each iteration, so that we can forget the parts of the memory that are not relevant anymore.

As an example, proving correctness of a strcmp function with a traditional invariant-based loop
would require an invariant like the following:
H2 : m2 |= array (uint 8) (len s1 + 1) (s1 ++ [|0|]) p1_pre

H1 : m1 |= array (uint 8) (len s2 + 1) (s2 ++ [|0|]) p2_pre

H3 : m3 |= R

H : \[p1 ^- p1_pre] ≤ len s1

H0 : \[p2 ^- p2_pre] ≤ len s2

H6 : \[p1 ^- p1_pre] = \[p2 ^- p2_pre]

H7 : s1[:\[p1 ^- p1_pre]] = s2[:\[p2 ^- p2_pre]]

...where p1 and p2 are pointers pointing somewhere into the middle of the two strings s1 and
s2 being compared, and p1_pre and p2_pre are the original values of p1 and p2 pointing to the
beginnings of the strings. Each loop iteration compares the two characters at p1 and p2 and exits
the loop if they are different.

On the other hand, if we view the same loop as if it were a tail-recursive function, its precondition
can become much simpler:
H2 : m2 |= array (uint 8) (len s1 + 1) (s1 ++ [|0|]) p1

H5 : ∼ List.In 0 s1

H1 : m1 |= array (uint 8) (len s2 + 1) (s2 ++ [|0|]) p2

H4 : ∼ List.In 0 s2

H3 : m3 |= R

Each iteration compares the first character of s1 and s2, and if a next iteration is needed, we
forget the two compared characters by moving them from s1 and s2 into the frame R. As the
postcondition, we can reuse the function’s postcondition, generalizing it over the ghost variables
s1, s2, p1, p2, R. Figure 4 shows the strcmp function proven in this style, with 32 lines of un-
interesting proof folded into ···. Note that the user needs to provide the intial values of all ghost
variables and somewhere in the omitted proof script also needs to specify the new values of the
ghost variables for the tail-recursive call (i.e. the next iteration).
We implement support for while and do-while loops in this style, using the symbolic state

before the loop, appropriately generalized and strengthened through a diff script by the user, as a
precondition, and the function’s postcondition as the postcondition of the tail-recursive view of
the loop. Since we do not want users to spell out loop postconditions manually, we do not support
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#[export] Instance strcmp_spec: fnspec := .**/

uintptr_t strcmp(uintptr_t p1, uintptr_t p2) /**#

ghost_args := (s1 s2: list Z) (R: mem→ Prop);

requires t m := <{ * nt_str s1 p1

* nt_str s2 p2

* R }> m;

ensures t' m' res := t' = t ∧
List.compare Z.compare s1 s2 = Z.compare (word.signed res) 0 ∧
<{ * nt_str s1 p1

* nt_str s2 p2

* R }> m' #**/ /**.

Derive strcmp SuchThat (fun_correct! strcmp) As strcmp_ok. .**/

{ /**. .**/

uintptr_t c1 = 0; /**. .**/

uintptr_t c2 = 0; /**.···.**/
do /* initial-ghosts(s1, s2, p1_pre, p2_pre, R); decreases (len s1) */ { /**. .**/

c1 = deref8(p1); /**. .**/

c2 = deref8(p2); /**. .**/

p1 = p1 + 1; /**. .**/

p2 = p2 + 1; /**. .**/

} while (c1 == c2 && c1 != 0); /**.···.**/
return c1 - c2; /**. .**/

} /**.···.**/ //.

Fig. 4. Viewing a do-while loop as a tail-recursive function to simplify the correctness proof. Note that a total
of 32 lines of proof has been folded into ···.

yet this tail-recursive view for cases where the code after the loop still needs to access the memory
that was “forgotten” (pushed into the frame) during the loop. In such cases, one would have to
factor the code into two functions or resort to a traditional while loop with just one invariant.

3.5.3 Variable-Naming Scheme. Our tactics make sure that a program variable named "x" always
has its corresponding value bound to a Coq variable named x. When a variable gets reassigned, the
old value is renamed into x', and x is used for the new value.

3.5.4 Context Packaging and Merging for if-then-else. After an if-then-else, we need to merge the
symbolic states from the end of the then- and else-branch. We use the following wp lemma:
Lemma wp_if_bool-dexpr fs c thn els rest t0 m0 l0 b Q1 Q2 post:

dexpr_bool3 m0 l0 c b

(then_branch_marker (wp_cmd fs thn t0 m0 l0 (package_context_marker Q1)))

(else_branch_marker (wp_cmd fs els t0 m0 l0 (package_context_marker Q2)))

(pop_scope_marker (after_if fs b Q1 Q2 rest post))→
wp_cmd fs (cmd.seq (cmd.cond c thn els) rest) t0 m0 l0 post.

When it gets applied, evars are created for the result b of evaluating the condition c, for the code
snippets thn, els, and rest, as well as for the postconditions of the two branches, Q1 and Q2. The
tactics first evaluate the condition c into a Boolean b. Then, the user can provide more snippets
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that make up the code of the then-branch. When providing the snippet .**/ } else { /**., the
then-branch is closed, and the evar ?Q1 is instantiated by our tactics to a conjunction of all the
hypotheses in the current context. When the user closes the else-branch, ?Q2 is instantiated in the
same way, and before the first command after the if-then-else is processed, the after_if marker
triggers a merge on the two symbolic states. after_if is defined as follows:
Definition after_if fs (b: bool) (Q1 Q2: trace→ mem→ locals→ Prop) rest post :=

∀ t m l, (let c := b in if c then Q1 t m l else Q2 t m l)→ wp_cmd fs rest t m l post.

The tactics introduce the let c := binding, so that we can mention the value of the Boolean
condition many times without becoming overly verbose, and then pushes down the if as far as
possible by detecting parts in Q1 and Q2 that have the same structure. This merging results in
symbolic states containing hypotheses with many if-then-else expressions like e.g. in the following:

H1 : m0 |= uint 32 (if c' then in1 else if c then in2 else in0) a0

Def7 : w1 = (if c' then /[in0] else /[in1])

A /* split */ option is available that can be inserted after the if condition if one prefers to
continue the proof separately after the if-then-else rather than using a merged state. However,
this only works if the if-then-else is at the end of a block with a concrete postcondition (i.e. a
loop invariant or the function’s postcondition), because splitting the proof of the code after the
if-then-else into two separate proofs would require writing down all the code snippets (which drive
the proof) twice, which would not result in the desired C code when treating the Coq file as a C file.

3.5.5 Safe Steps – Avoiding backtracking for better proof debuggability. In the past, most frameworks
for automated program proofs have focused on presenting automated proofs that work. However,
we must recognize that the default case that users of program verification frameworks have to deal
with is the case where the prover fails or seems to run forever, either because the program or the
specification contains a bug, or because a user-provided invariant is not strong enough, or because
the prover lacks some domain-specific insight or hint that needs to be provided by the user.
We believe that debugging these situations, and being able to determine quickly which of the

above is the case, is the primary usability criterion for a program-verification tool, much more
important than the number of lines of proof script that users need to provide manually.
We carefully designed our proof automation in such a way that it never runs for longer than a

few seconds, and if it does, we consider it a bug. Moreover, to make it more debuggable, we avoid
backtracking as much as possible and instead use mechanisms that allow us to know whether a
proof step is safe, i.e. will not turn a provable goal into an unprovable one. We expose a tactic called
step to the user, and when a proof does not work, the user can manually invoke step many times
and watch step-by-step what the prover does and how it affects the proof goal.

To give an example of safe and unsafe steps, if we have a goal ?xs ++ ?ys = vs1 ++ vs2, i.e. two
evars on the left and normal variables on the right, it would be tempting to just instantiate ?xs to
vs1 and ?ys to vs2. However, this might make another goal in which the two evars appear as well
unsolvable, because the right choice for ?xs might be vs1 ++ vs2[:1], and the right choice for ?ys
would then be vs2[1:]. On the other hand, on a very similar-looking goal, vs1 ++ ?ys = vs1 ++ vs2,
it is safe to instantiate ?ys to vs2, because that is the only possible choice.

We use a user-extensible hint database of safe_implication P Q judgments, with safe_implication P Q

defined as P implies Q. The opposite direction usually also holds, but in some cases, Q does not
quite imply P, yet the only reasonable way to prove Q is to reduce it to proving P, so we do
not require the opposite implication direction. For the examples like the above, our hint data-
base of safe steps contains the rules safe_implication (ys1 = ys2) (xs ++ ys1 = xs ++ ys2) and
safe_implication (xs1 = xs2) (xs1 ++ ys = xs2 ++ ys).
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4 IMPLEMENTATION NOTES
4.1 Parsing C in Coq
Using Coq’s notation system , we can declaratively write a parser for a big enough subset of C. Our
ASTs use strings to represent identifiers, but we do not want double quotes around these strings to
appear in our C code. Unfortunately, there is no officially supported way of getting rid of these
quotes in Coq, so we resort to a somewhat sinister trick by Pit-Claudel and Bourgeat [2021, §3].

4.2 On-Demand Addition of Callee-Correctness Hypotheses
The correctness statement of a function in our framework whose direct callees are 𝑐1, 𝑐2, . . .𝑐𝑁
roughly looks like spec of 𝑐1 ∧ . . . ∧spec of 𝑐𝑁 → ∀ 𝑡 𝑚 𝑠. Pre(𝑡,𝑚, 𝑠) → wp env (𝑡,𝑚, 𝑠) 𝑏𝑜𝑑𝑦 Post.
Listing the specifications of the callees allows our proofs to abstract over callee implementations:
All we require is that the function environment env contains a function satisfying some spec. But
at the moment we start a function’s correctness proof, we do not know yet its function body, so we
cannot yet determine its list of callees. We resolve this seemingly circular dependency using an
evar. Each function definition is augmented with its list of callee specs, which is instantiated to
an evar at the beginning of the proof. The hypothesis of the proof is then just a fold using logical
“and” over this (not-yet-instantiated) list of callee specs. Whenever we call a function whose spec is
s, we instantiate this evar to (cons s ?new_evar), and at the end of the function, we instantiate the
remaining evar to the empty list.

4.3 Extracting Pure Facts from Sep Clauses
A separation-logic formula often contains some pure (i.e. heap-indepenent) facts, either by explicitly
asserting them or because its definition implies them. For example, a (ring_buffer cap vs a)

judgment declaring a circular buffer of capacity cap at address a containing the elements in list vs
might imply the pure fact len vs ≤ cap.

In order to make such pure facts available to our solver for arithmetic side conditions, we define
the judgment purify R P := ∀ (m: mem), R m → P, and whenever we define a new separation-logic
predicate R, we also prove a corresponding purify lemma and register it in a custom hint database.
Before running side-condition solvers, our framework searches the hint database for a purification
rule of the form (purify R _) for each separation-logic clause R and applies all the found rules.

4.4 Pattern-Based Selective Warning Suppression
If the framework encounters a separation-logic clause for which it cannot find a purify hint or a
PredicateSize, it emits a warning, because often, this is the reason a proof does not go through. But
some clauses do not contain pure facts or do not have constant sizes. For these, we want to suppress
the warning selectively. To do so, we use a Coq hint database to which we add the patterns of all
warnings that should be suppressed. Compared to most other warning-suppression mechanisms,
which only allow warnings to be suppressed by their kinds, ours also allows suppressing them
based on their arguments, without any additional implementation effort: We just piggy-back on
Coq’s very general building blocks.

4.5 Mixed Word/Integer Arithmetic Side Conditions
When reasoning about array accesses and simplifying symbolic expressions indexing into lists,
many arithmetic side conditions need to be solved. Since our specifications are written in terms of
Z, but the programs operate on a bounded word type, we obtain side conditions that mix the two.
We solve such a goal as follows: First, if it is an equality or inequality on words, we use an injectivity
lemma to reduce it to an equality or inequality on Z. Next, we push down all conversions from word
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to Z (written as \[x]), transforming them into modulos. For instance, \[a ^+ b] gets rewritten to
(\[a] + \[b]) mod 2 ^ 32. Then, we eliminate modulos using the Euclidean equations, leading
to terms like \[a] + \[b] - 2 ^ 32 * k, where k is (\[a] + \[b]) / 2 ^ 32. For efficiency, our
implementation merges these two steps into one. This push-down of \[_ OP _] into \[_] OP \[_]

with modulos is applied recursively until only variables or unintepreted functions are wrapped
in \[_]. Bounds are then asserted, since interpreting a word as an unsigned Z always leads to a
number between 0 and 2 ^ 32. Finally, we invoke Coq’s linear-arithmetic solver lia.

4.6 Undoable, Reusable Zification
We call the preprocessing described in the previous subsection Zification. Before solving arithmetic
side conditions, it has to be applied to the conclusion, as well as to all arithmetic hypotheses.
Our bottom-up term-simplification procedure needs to invoke arithmetic-side-condition solving
hundreds of times in order to find which simplifications to apply. For instance, when encountering
a list slice starting at i of a list append like (xs ++ ys ++ zs)[i:], we need to test whether i is ≤ 0,
points somewhere into xs, ys, or zs, or whether it exceeds the whole length, which already amounts
to 5 separate queries. Zifying all hypotheses from scratch for each arithmetic side condition would
be unacceptably slow. Instead, we implement Zification in such a way that it does not modify any
hypotheses but just makes a Zified copy of each arithmetic hypothesis. Each time the user adds a
new C snippet, we run hypothesis Zification once and reuse the Zified hypotheses for many side
conditions, and just as the last step before marking the goal as ready for the next C snippet, we
clear all the Zified hypotheses, so that a clean and concise context is presented to the user.

5 DISCUSSION
In the following, we discuss a few design alternatives that we decided not to pursue further.

5.1 Why Not a Stand-Alone Tool?
Building our framework inside Coq required us to go through some contortions, especially to make
tactic invocations look like C snippets – clearly, Coq was not designed to do this.

In order to build a software-verification tool that provides a live display of the current symbolic
state, we could also have built a stand-alone tool from scratch, which might have saved us some
trouble and, if implemented well, might also have been more performant because it could be more
specialized to our task, thus not having to pay the cost of being run inside a tool as generic as Coq.
However, Coq still has several advantages that made us choose it: Coq provides many term-

manipulation facilities, including concise term matching, and its foundational proofs, i.e. proofs
that are checked by its small proof-checking kernel, guarantee soundness, so that bugs in our
framework cannot lead to wrong proofs, which allows us to modify the tool more freely and
confidently, without worrying about soundness at each modification. Finally, working with Coq
paves the way for connecting to the many other interesting verified artifacts in the Coq ecosystem.

5.2 Limiting the Number of Conversions and Avoiding Operator Overloading
To avoid accidential overflows in our specifications, we write them using unbounded integers Z,
but the values treated by our programs are bounded 32-bit integers, and loading and storing 8-bit
and 16-bit values is supported as well. Moreover, certain values in the specifications cannot be
negative, so they would belong to N. We tried using separate types for N, Z, 8-bit, 16-bit, and 32-bit
words, but it led to two problems:

First, since Coq does not support subtyping natively, coercion functions are needed between
different number types. Writing and displaying them explicitly becomes very verbose quickly,
and relying on Coq’s implicit coercion feature did not work well. Coercions are inserted during
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typechecking, so patterns, which are untyped, do not have them inserted, which can lead to
confusion. Coercions also make it harder to copy-paste a term from the goal into the proof script,
because one might miss a coercion that only gets inserted because of the surrounding context.

The second problem was operator overloading: We would like to use some short infix notation
for common operators like addition, subtraction, etc. Coq provides a mechanism called notation
scopes that works well as long as no polymorphic functions are used, because when parsing the
arguments of a function, Coq relies on the signature of the function to determine in which notation
scope (e.g. the notation scope for N or for Z) to parse the arguments. Another popular mechanism
for operator overloading is to use typeclasses. For instance, the infix notation (a + b) might be
defined as (TypeclassBasedAdd a b), where TypeclassBasedAdd takes an implicit argument that is
a typeclass instance implementing addition on the type of a and b. However, if we simplify terms
or obtain terms from third-party libraries not using such a typeclass-based notation system, they
contain the plain (Nat.add a b) instead of our typeclass-based one, so they will not be printed the
same and will not match our terms syntactically. Similar problems occur with a related approach
based on canonical structures. We also tried an operator-overloading approach using notations
with tactics in terms that typechecks the operands and picks the right operator based on the type of
the operands, resulting in plain terms like (Nat.add a b), combined with ambiguous printing-only
notations that use the same + symbol for addition on all types. It was a bit heavy-weight and did
not work in patterns (because they are not typechecked), so we stopped using it.
Finally, we decided to restrict ourselves to just two number types: 32-bit words and Z. This

approach only requires three coercions: truncating aZ to a bounded integer (whichwewrite as /[x]),
interpreting a word as a signed integer (which we use less frequently and write as word.signed x),
and interpreting a word as an unsigned integer (which we write as \[x]). It also only requires two
sets of infix arithmetic operators, so we use the regular operators for Z and operators prefixed by ^

such as ^+, ^-, etc. for words.

5.3 Implementation Language
Our framework is implemented using a mix of tactic scripts and lemmas and definitions in Gallina
(Coq’s specification language) that are specifically tailored to work well with our tactic scripts.
For compatibility with other code from the Bedrock2 ecosystem, we refrain from modifying Coq
itself (even though this might have simplified certain parts), and to easily remain compatible with
new Coq versions, we refrain from writing any OCaml plugins, because Coq’s OCaml API tends to
change with each Coq version. The tactics are implemented in a mix of Ltac1 and Ltac2.

5.3.1 Ltac1 vs Ltac2: When to prefer an untyped language with undocumented semantics. Ltac1 is an
untyped language without clearly specified semantics. For instance, whether a variable refers to a
binder declared in Ltac, to a binder declared in a Gallina term quoted inside Ltac code, or to the
name of a hypothesis in the current proof context is decided at runtime, in a barely documented
manner. It can also happen that a thunk being passed to a function and meant to be lazily evaluated
can accidentally be eagerly evaluated. Another common source of surprises is that whether a tactic
is a pure function returning a term or an imperative program modifying the current proof goal is
also decided at runtime.

Ltac2 addresses these shortcomings by being a typed language with straightforward call-by-value
semantics and unambiguous quotation mechanisms to make it clear what variables refers to. In
addition, it offers some low-level APIs that Ltac1 does not have.
Given this situation, one might expect that the unambiguously preferred choice for the whole

framework would be Ltac2. However, this is not the case in our experience:
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First, even though Ltac2 has been developed over several years now, it still lacks support for many
tasks that can be done in Ltac1 much more easily, so when writing Ltac2, a considerable amount of
time is spent working around non-fundamental limitations related to not-yet-implemented features.
And second, Ltac1 code is exceptionally concise, in a manner that really matters: In our experience,
there seems to be a certain verbosity threshold below which a tactic programmer can read and
understand tactic code very quickly and easily, and Ltac1 is the only programming language we
know to be below this verbosity threshold. The reason for Ltac2 often being above it seems to be on
one hand that it is typed and more principled, i.e. it requires being explicit about many things that
are implicit in Ltac1, and on the other hand, that less effort has been spent yet on defining concise
notations for Ltac2. We are curious to see how future evolution of Ltac2 affects these considerations.
For now, we use a mix of Ltac1 and Ltac2, preferring Ltac2 for bigger, more complex functions,

where the benefit of catching errors before tactic runtime is considerable, and for situations where
low-level term APIs are needed.

5.4 Bitwidth Parameterization
The Bedrock2 library is parameterized over the bitwidth of the processor, which can be 32 or
64 bits. The parameterization is expressed within Coq, as opposed to making it a configuration
option of the build system that requires recompilation of the whole development to change the
bitwidth (like e.g. CompCert does). Parameterizing within Coq makes proofs (no matter at what
level of automation) more laborious, because reasoning about constant expressions is simpler than
reasoning about symbolic expressions. For instance, the byte offset of the third field of a (packed)
record consisting of three machine-word fields is 2*width/8, a symbolic expression, whereas it
can be expressed as a constant, 8 or 16 respectively, if the bitwidth is known. Moreover, when
expressing (fixed-size) word arithmetic in terms of (unbounded) integer arithmetic so that we can
use Coq’s powerful linear-integer-arithmetic solver lia, most operations introduce _ mod width

expressions. Using the Euclidian division equations, one can express divisions and modulo in terms
of multiplication and addition only, thus making the proof obligations amenable for lia, but only if
width is a constant, because otherwise we would have a multiplication of two variables, which is
outside the linear-arithmetic fragment. Therefore, we decided to start developing our framework
with support for 32-bit processors only and defer generalization to other bitwidths to future work.

6 EVALUATION
6.1 Scope of Sample Programs
We used our tool to verify a few sample functions listed in Table 2, trying to cover an interesting set
of low-level memory-handling patterns. It includes splitting a byte buffer into a linked list of free
blocks in the init function of a simple malloc library with a fixed block allocation size, lookup and
insertion functions for a binary search tree and a crit-bit tree [Bernstein 2006] where we exploit the
pre-/postcondition loop verification style by Tuerk [2010] to avoid the need for “tree-with-a-hole”
predicates, passing record fields and sub-arrays to functions without having to first manually split
the record or array predicate, and functions with up to three if-then-else constructs.
The crit-bit tree example shows that we can also support data structures with more involved

validity constraints, at the expense of more manual proof lines, though we believe that a more
automated proof style could reduce the number of lines of proof. This example also provides a
data-point on usability of our framework, because the example was developed by an undergraduate
student who did not participate in the development of the framework and had started to learn Coq
less than three months before completing this proof of crit-bit lookup and insert functions.
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File Funcs Snippets Lines Time[s] Loops
onesize_malloc 3 24 345 20.25 1 + 0
tree_set 4 66 389 73.63 0 + 2
swap 2 10 44 3.77 −
swap_record_fields 2 6 83 4.00 −
fibonacci 1 17 83 8.74 1 + 0
memset 1 7 41 9.29 1 + 0
sort3 1 22 51 36.31 −
critbit 8 122 1881 255.11 2 + 2
swap_subarrays 1 3 48 15.77 −
sort3_separate_args 1 22 58 22.87 −
linked_list 2 16 252 10.06 1 + 1
nt_uint8_string 1 11 299 60.76 0 + 1
min 3 32 71 6.97 −

Table 2. Statistics of our case studies. The two numbers in the Loops column indicate the number of invariant-
based loop proofs and the number of of pre-/post-based loop proofs, respectively.

6.2 Qualitative Discussion of Loop-Invariants-As-Diff Approach
As illustrated by the example in § 3.1.7, in our framework, users express loop invariants as diffs
from symbolic state before loops. Table 5 shows why we prefer this middle ground over the two
extremes in the design space, manually spelled-out invariants or automatically inferred invariants.
By robustness, we mean how likely it is that after a small modification of the program, the

proof still works. Manually spelled-out loop invariants are very likely to require some update after
a program modification, whereas an invariant expressed as a diff that just encodes the insight
and avoids mentioning irrelevant details is more likely to remain applicable. Automated invariant
inference tends to be not so stable under modification of the proof context, because the presence of
a new but unrelated term might send the invariant search down a wrong path, so that an invariant
that was found within reasonable time before the program change might time out after the change.

By proof performance, we mean the running time it takes to produce and check the correctness
proof. Executing the diff script corresponds to proving that the symbolic state before the loop
implies the loop invariant, i.e. proof work that any framework needs to do, so we do not count it.

The expressivity of themanual and the diff approach ismaximal, because any invariant expressible
in the logic can be used, whereas in the automatic approach, only those that the heuristics find
within a reasonable time limit can be used.

Another advantage of our approach (shared with the approach of manually providing loop
invariants) is that we can display a symbolic state at any point inside the loop body even if the loop
body has not been completely written yet or some parts of the proof fail because of a bug in the
code or because of a missing hint or tweak. In contrast, the fully automatic approach only knows
that it picked a reasonable loop invariant if the correctness proof of the whole loop worked out.

Currently, the star ratings in Figure 5 are not based onmeasurements but on anecdotal evidence, so
it is cautious to view them as conjectures. In future work, we hope to back it up with measurements,
but at the moment, our framework is still in an early prototype phase where most new examples
that we verify point us to some bugs and limitations in the framework that we fix on the fly, but for
a meaningful evaluation, one should not make fixes to the framework while verifying examples.
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manual by diff automatic
verbosity ⋆ ⋆⋆ ⋆⋆⋆
robustness ⋆ ⋆⋆ ⋆⋆
proof performance ⋆⋆⋆ ⋆⋆⋆ ⋆
fully expressive ✓ ✓ ✗

can display state ✓ ✓ ✗

total 5⋆ + 2✓ 7⋆ + 2✓ 6⋆ + 0✓

Fig. 5. Tradeoffs in the design space around loop-invariant automation. Conjectured ratings on a one-star
(worst) to three-star (best) rating scale.

6.3 Some Statistics
Some file-by-file statistics are shown in Table 2. The first column lists the number of functions in
each file, and the second lists the number of snippets, which typically corresponds to the number
of lines of C code. The total number of lines of each file (third column) is much bigger, because
the files also contain specifications, definitions needed to state the specifications, helper lemmas,
file-specific proof automation and hints, as well as proof code interspersed between the C snippets.

Table 2 also shows the total time Coq takes to verify each file. Typically, processing each snippet
takes just a couple of seconds, and in our experience, it is just right below the threshold of what is
bearable for interactive development (and whenever it exceeded that perceived threshold, we spent
more effort on speeding up the proof automation).
The final column shows the number of loops in each file, expressed as 𝑥 + 𝑦, where 𝑥 is the

number of loops proven with an invariant expressed as a diff script from the symbolic state before
the loop, and 𝑦 is the number of loops proven with a family of pre/postcondition pairs (in the style
popularized by Tuerk [2010]) by expressing the precondition as a diff script and automatically
generalizing the function’s postcondition to use it as the loop’s postcondition.

So far, our experience seems to confirm our conjectures from Figure 5. Once our framework has
matured to a point where we do not anymore feel compelled to make framework improvements
with every new sample program, we plan to evaluate our conjectures from Figure 5 more rigorously.

7 RELATEDWORK
Dafny [Leino 2013, 2017] is a high-level programming language with a specification language and
SMT-based, highly automated proving of verification conditions. The development experience is
very interactive, as the IDE continuously checks the verification conditions. Our framework is still
far from reaching the level of automation of Dafny but does have a few advantages over Dafny:

• It allows to reason about (a subset of) C, which is more low-level and more efficient, and can
reason about low-level operations like casting byte arrays to records.

• Users can extend the proof automation with domain-specific verification procedures.
• By repeatedly invoking our step tactic, users can watch how our system solves sideconditions
and can easily debug cases where our solver fails.

• The correctness of the tool itself need not be trusted, only Coq’s kernel, which is much
smaller than Coq’s tactic system and our tool’s tactics, and also much smaller than the Dafny
tool and the SMT solver it uses.

• Finally, and perhaps most importantly, our tool can provide a concise representation of
everything the prover knows, in the form of the proof context (list of hypotheses) of Coq’s
current proof goal. We believe that such a concise summary of all known facts is similar to
what attentive programmers need to keep track of in their minds while programming, so
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displaying it on-screen can assist the programmer. In Dafny, there is no such representation,
and the only way to find out whether the prover knows a given fact is to write it down as an
assertion at the program point in question and see if Dafny can prove it.

VeriFast [Jacobs et al. 2011] is a separation-logic-based C verification tool. Its symbolic debugger
can display the current symbolic state to the user at any program point, and users can affect the
symbolic state by invoking lemma functions in ghost code (comments) in the source program.
VeriFast is implemented in OCaml. As far as we know, there is no easy way to add domain-specific
verification automation on a per-function or per-module basis, while our own approach provides
various Ltac hooks and hint databases that users can extend, and provides smooth integration
between framework code and user code, because both are written in the same language (Ltac).
Boogie, the intermediate verification language powering Dafny, used to have a verification

debugger [Le Goues et al. 2011] providing counterexamples for failed verification conditions.
However, it appears that it was not popular enough to be maintained, and it was eventually
removed from the codebase [Qadeer 2020].
Rupicola [Pit-Claudel et al. 2022] is an extensible, user-configurable compiler from functional

programs written in Coq to Bedrock2 code. The user specifies the compilation strategy and lets
the framework derive the code accordingly. In contrast, our framework is designed for users who
already have a clear idea of what low-level code they want, and feel that configuring the compiler
until it emits the desired low-level code would be more work than just writing down the code.
The Verified Software Toolchain (VST) [Cao et al. 2018] is a tool based on Hoare logic and

separation logic, implemented in Coq, for proving correctness of C programs. It uses a similar style
of stepping through a program line-by-line, using Coq’s context of hypotheses to keep track of
the symbolic state. Instead of using Hoare triples {𝑃}𝑐{𝑄} like VST, we use wp judgments of the
form ∀𝑠, 𝑃 𝑠 ⇒ wp 𝑐 𝑠 𝑄 , so the precondition is already separated and can more easily be moved
into Coq’s context of hypotheses. In VST, one has to recompile the source program and reload the
whole proof each time one wants to change the source program, and sometimes, it is hard to relate
the positions in the proof script to positions in the source code.

Why3 [Bobot et al. 2015; Filliâtre and Paskevich 2013] is a tool for interactive development and
verification of programs. It provides a programming and specification language called WhyML and
can also be used as an intermediate language to verify C, Java and Ada programs. It discharges its
verification conditions to automated as well as interactive external theorem provers.

CAPS [Chaudhari and Damani 2014, 2015], which stands for Calculational Style of Programming,
uses a tactic-based approach to derive programs from specifications, and uses Why3 as its backend.

8 CONCLUSION AND FUTUREWORK
We have presented a tool for verifying low-level programs using the Coq proof assistant, in a way
that continually provides a concise representation of the current symbolic state as the user writes
the program. Additionally, our tool stands out by its support for diff-based loop invariants, its
option to allow users to extend the proof automation with domain-specific procedures, its small
trusted code base that does not include the tool itself, and its compatibility with the Bedrock2
ecosystem that enables end-to-end proofs, which also check that the assumptions that the different
tools make about each other are compatible.

It seems to us that the size of the biggest case study in Bedrock2 [Erbsen et al. 2021] was mostly
bottlenecked by the lack of automation and usability of the program logic. Similar limitations
apply to other Coq-based C verification tools like e.g. VST [Cao et al. 2018] as well. With our
live-verification framework, we hope to make a step towards more convenient verification of
low-level code in Coq, eventually enabling bigger end-to-end verified stacks.
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