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Abstract9

Some processors, especially embedded ones, do not implement all instructions in hardware. Instead,10

if the processor encounters an unimplemented instruction, an unsupported-instruction exception11

is raised, and an exception handler is run which implements the missing instruction in software.12

Getting such a system to work correctly is tricky: The exception handler code must not destroy any13

state of the user program and must use the control and status registers (CSRs) of the processor14

correctly. Moreover, parts of the handler are typically implemented in assembly, while other parts15

are implemented in a language like C, and one must make sure that when jumping from the user16

program into the handler assembly, from the handler assembly into C, back to assembly and finally17

back to the user program, all the assumptions made by the different pieces of code, hardware, and18

the compiler are satisfied.19

Despite all these tricky details, there is a concise and intuitive way of stating the correctness of20

such a system: User programs running on a system where some instructions are implemented in21

software behave the same as if they were running on a system where all instructions are implemented22

in hardware.23

We formalize and prove such a statement in the Coq proof assistant, for the case of a simple24

exception handler implementing the multiplication instruction on a RISC-V processor.25

2012 ACM Subject Classification Replace ccsdesc macro with valid one26
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1 Introduction28

Assembly language is frequently regarded as the lowest level of software abstraction in software29

verification endeavors. However, the ISA (Instruction Set Architecture) semantics typically30

employed for software verification present an abstraction of the bare-metal ISA specifications,31

omitting machine-level aspects of the ISA, like the configuration registers that control32

the intricate interplay between the hardware’s intrinsic capabilities and the meticulously33

crafted firmware (a piece of software) tasked with maintaining machine configurations and34

implementing high-privilege handlers in charge of emulating unsupported instructions, and35

managing other forms of low-level exceptions.36

For example, in the RISC-V ISA, Control and Status Registers (CSRs) shape the behavior37

and functionality of the machine. These registers serve as a mechanism for controlling various38

aspects of the processor’s operation, ranging from enabling or disabling specific features to39

controlling where the machine jumps in case of interrupts and exceptions. These registers40

and the associated exception handlers exert fundamental control over machine behaviors, so41

their improper configuration can lead to undefined outcomes.42

Control and Status Registers coupled with the handlers introduce an intriguing specifica-43

tion, implementation, and verification challenge: while they are both essential to determining44
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the machine’s behavior, the Control and Status registers are themselves set and manipulated45

by software, and the handlers are themselves software.46

There is a bit of a chicken-and-egg problem: We want to provide a nice and simple ISA47

abstraction, but to implement this abstraction and prove it correct, we have to write a trap48

handler and want to use a compiler whose proof already relies on this abstraction that we49

are supposed to implement, so how can we break the circularity?50

Let’s acknowledge that one might be tempted to simply augment software verification51

efforts with more detailed and faithful ISA specifications. We eschew this approach. The52

simplified ISA abstractions commonly employed are far more practical and productive53

compared to their cumbersome and heavier bare-metal counterparts, and the intricate details54

of configurations and handlers should anyway remain irrelevant to software or compilers55

higher up the stack.56

This paper endeavors to disentangle the problem by focusing on a simplified-yet-illustrative57

instance: the specification, implementation, and verification of a RISC-V machine with58

software-implemented multiply instructions.59

Through this exploration, we aim to shed light on the interesting challenges posed by60

Control and Status Registers and handlers and pave the way for a more coherent understanding61

of hardware-software interactions.62

We will show that for this simple case we can indeed provide (with proofs!) the desired63

abstractions, and that, maybe counterintuitvely, we can leverage tools that were built on64

top of those nice abstractions to provide the said abstractions, without creating a circular65

conendrum.66

Our paper makes the following contributions:67

We propose a pleasantly simple specification for a RISC-V system equipped with a68

software trap handler emulating unsupported instructions: User programs running on a69

system where some instructions are implemented in software in a trap handler should70

behave as if they were running on a system with hardware support for these instructions.71

We implement such a trap handler by combining code in a C-like language with hand-72

written assembly code, and prove its correctness, in a mechanized and foundational way,73

down to the binary machine code of the handler, combining symbolic-evaluation proofs74

at the C-level and assembly level with a compiler-correctness proof.75

All our code is publicly available at https://github.com/mit-plv/softmul.76

2 Overview77

We want to show that a machine without hardware support for multiplication, but correctly78

configured with an exception handler that implements multiplication in software, behaves79

like a machine that supports multiplication in hardware. This theorem could then be used to80

simplify reasoning about programs running on a machine without hardware multiplication,81

because it saves the burden of reasoning about the trap handler and instead makes it as easy82

as reasoning about the specification with multiplication in hardware:83

match inst with
| Mul rd rs1 rs2⇒

x← getRegister rs1;

y← getRegister rs2;

setRegister rd (mul x y)

| ...

end

84

https://github.com/mit-plv/softmul
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Figure 1 Overview diagram. The circled numbers are referenced in the text and do not stand for
any meaningful order.

We use the RISC-V instruction set architecture [1, 2], as formalized in riscv-coq [5].85

RISC-V splits the instruction set into several extensions, each named with an uppercase letter.86

The base instruction set that every processor must support is called I, and multiplication,87

division and modulo operations are in a separate extension called M that small embedded88

processors may choose not to implement, or to implement in software by catching unsupported-89

instruction exceptions.90

The riscv-coq specification defines a set of rougly a dozen primitives such as e.g.91

getRegister, setRegister, loadByte, storeByte, and then defines the semantics of each RISC-V92

instruction in terms of these primitives. As explained in [5], the semantics of each primitive93

is deliberately left unspecified in riscv-coq, so that each application that needs a formal94

specification of RISC-V can instantiate these primitives in a suitable domain-specific way.95

Figure 1 presents an overview of our code (boxes ➄ and ➅) and specifications (the96

remaining boxes). Our theorem uses two instantiations of the riscv-coq specification: One97

that implements multiplication in hardware (box ➀), and one (box ➁) that implements it98

using a trap handler. Note that since the configurability of this specification is first-class, i.e.99

expressed in Coq itself rather than in some configuration files of the build process, there is100

no code duplication between the two instantiations.101

Parts of the exception handler (box ➅) are implemented in the Bedrock2 source lan-102

guage [8] and compiled (➆) using the Bedrock2 compiler, but the handler also needs some103

low-level operations that are not expressible in the Bedrock2 source language and are therefore104

implemented by-hand in assembly. That is, our handler (box ➄) starts and ends in hand-105

written assembly, and calls a compiled Bedrock2 function in the middle. Our proof combines106

a program-logic proof about the Bedrock2 handler function, the compiler-correctness proof,107

and a proof about the assembly instructions, guaranteeing that all these parts have been108

put together correctly, and the final statement only mentions RISC-V semantics. All the109

other interfaces have been canceled out by combining the proofs and thus are not part of the110

trusted code base any more.111

In addition to the two instantiations of the RISC-V semantics with and without hardware112

multiplication, our proof (but not the final statement) also uses a third instantiation (box ➃)113

which does not have any CSRs (control and status registers, required by the exception114

mechanism). This third instantiation fails (with undefined behavior) on all CSR-related115

instructions. For the compiler, an axiomatization (box ➂) of this instantiation was chosen116
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to simplify the proof, because the compiler does not emit any instructions that depend on117

CSRs.118

3 The Toplevel Theorem Statement119

We can state the theorem (arrow ➉ in Figure 1) as follows:120

121
Theorem softmul-correct: forall (initialH initialL: MachineState) (post: State→ Prop),122

runsTo (mcomp_sat (run1 mdecode)) initialH post→123

R initialH initialL→124

runsTo (mcomp_sat (run1 idecode)) initialL (fun finalL⇒125

exists finalH, R finalH finalL ∧ post finalH).126127

It is phrased as a specification preservation1 statement: If a machine with hardware128

multiplication runs from an initial state initialH to states satisfying a postcondition post,129

then every machine initialL with hardware multiplication, related to initialH by R, runs to130

a low-level state finalL which, when translated back to a high-level state finalH, satisfies the131

same postcondition.132

The theorem uses run1, which defines how one single instruction is executed:133

134
Definition run1(decoder: Z→ Instruction): M unit :=135

pc← getPC;136

inst← Machine.loadWord Fetch pc;137

Execute.execute (decoder (LittleEndian.combine 4 inst));;138

endCycleNormal.139140

It is is parameterized over the instruction decoder, which is instantiated with mdecode141

(a decoder that supports the multiplication instruction) in the hypothesis and with idecode142

(a decoder that returns InvalidInstruction for the multiplication instruction) in the conclusion143

of the theorem.144

The mcomp_sat function is of type M unit → State → (State → Prop) → Prop and asserts145

that a monadic program (consisting of primitives used in riscv-coq such as getRegister,146

setRegister, loadByte, etc), applied to some initial state, satisfies a postcondition, and runsTo147

lifts it to an arbitrary (but finite) number of steps.2 The predicate R (Figure 2) is used to148

relate a high-level state (i.e. the state of a machine that supports multiplication in hardware)149

to a low-level state (i.e. the state of a machine that implements multiplication in software150

using a trap handler), and it also contains all the preconditions on how the low-level machine151

needs to be configured. That is, R asserts that the two states have the same values for the152

registers and the program counter, and that the memory (modeled as a partial map from153

32-bit addresses to bytes) of the low-level machine contains everything of the high-level154

memory, as well as the instructions of the exception handler and some scratch space that the155

exception handler can use as its stack (which must be available even if the main program156

has used up all of its stack). To define at which address in memory the handler and the157

scratch space are located, RISC-V defines some control-and-status registers (CSRs) [2] that158

our definition of R mentions:159

The CSR called MTVecBase is used to store the address of the trap handler (we use direct160

mode where all exceptions set the PC to the same address, but RISC-V also has a vectored161

1 It can also be seen as a small-step omnisemantics forward simulation as defined in [6].
2 runsTo is defined like the omnisemantics eventually operator [6].
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Definition R(r1 r2: MachineState): Prop :=

r1.(regs) = r2.(regs) ∧
r1.(pc) = r2.(pc) ∧
r1.(nextPc) = r2.(nextPc) ∧
r1.(csrs) = map.empty ∧
basic_CSRFields_supported r2 ∧
regs_initialized r2.(regs) ∧
exists mtvec_base scratch_end,

map.get r2.(csrs) CSRField.MTVecBase = Some mtvec_base ∧
map.get r2.(csrs) CSRField.MScratch = Some scratch_end ∧
<{ * eq r1.(mem)

* mem_available (word.of_Z (scratch_end - 256)) (word.of_Z scratch_end)

* ptsto_bytes (word.of_Z (mtvec_base * 4)) softmul-binary }> r2.(mem).

Figure 2 The predicate relating high-level states (multiplication implemented in hardware) to
low-level states (multiplication implemented in software)

mode where the PC is set to the base address in this register plus an offset corresponding162

to the cause of the exception).163

The CSR called MScratch is a read/write register dedicated for use by machine mode, and164

we use it to store the address of the end of the scratch space (we store the end address165

instead of the start address because it is used like a stack that grows downwards).166

4 The Handler Code167

The exception-handler code is implemented partially in handwritten assembly and partially168

in the Bedrock2 [8] source language and compiled to bytes by the Bedrock2 compiler. In169

order to prove the softmul-correct theorem, we use the correctness theorem of the Bedrock2170

compiler, but note that the statement of the softmul-correct theorem does not depend on the171

Bedrock2 language semantics or on anything related to the fact that we used the Bedrock2172

compiler, so the auditing burden for someone (who trusts the Coq proof checker) auditing173

our handler is much smaller, because one does not need to worry about the compiler, its174

language semantics, and its interaction with the assembly code.175

The handwritten assembly of the handler is shown in Figure 3a. Since we want our176

software-emulated multiplication to behave as if it was implemented in hardware, we cannot177

make any assumptions about the remaining space on the user program’s stack, nor about178

whether the stack pointer sp contains any meaningful value at all. Therefore, we reserve179

a separate scratch space in memory just for our handler, and require that the control and180

status register (CSR) MScratch contains the address of that scratch space.181

As its first action (in handler_init), the handler has to store all 32 registers of the user182

process by which it was triggered. It may only use registers that it has already saved, because183

otherwise it would destroy state of the user program. We therefore resort to tricks such184

as temporarily storing the user stack pointer in the MScratch CSR, and then temporarily185

storing it in the return address register. Such tricks are easy to get wrong (and we did, see186

section 8.2).187

After handler_init, the registers 3 to 31 are saved to the scratch space as well, and then188

the Bedrock2-generated part is called by passing it the value of the CSR register MTVal, which189

contains the invalid instruction that caused the exception, and a pointer to the scratch space190

in which we saved the registers.191
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Definition handler_init := [[

Csrrw sp sp MScratch; (* swap sp and MScratch CSR *)

Sw sp zero (-128); (* save the 0 register (for uniformity) *)

Sw sp ra (-124); (* save ra *)

Csrr ra MScratch; (* use ra as a temporary register... *)

Sw sp ra (-120); (* ... to save the original sp *)

Csrw sp MScratch; (* restore the original value of MScratch *)

Addi sp sp (-128) (* remainder of code will be relative to updated sp *)

]].

Definition inc_mepc := [[

Csrr t1 MEPC;

Addi t1 t1 4;

Csrw t1 MEPC

]].

Definition handler_final := [[

Lw ra sp 4;

Lw sp sp 8; (* Bug: used to be ˋCsrr sp MScratchˋ, which is wrong if Mul sets sp *)

Mret

]].

Definition call-mul := [[

Csrr a0 MTVal; (* argument 0: value of invalid instruction *)

Addi a1 sp 0; (* argument 1: pointer to memory with register values before trap *)

Jal ra (Z.of_nat (1 + List.length inc_mepc + 29 + List.length handler_final) * 4)

]].

Definition asm_handler_insts := handler_init ++ save_regs3to31 ++

call-mul ++ inc_mepc ++ restore_regs3to31 ++ handler_final.

(a) Assembly part of trap handler (embedded in Coq)

Definition softmul := func! (inst, a_regs) {

a = a_regs + (inst>>15 & 31)<<2;

b = a_regs + (inst>>20 & 31)<<2;

d = a_regs + (inst>>07 & 31)<<2;

unpack! c = rpmul(load(a), load(b));

store(d, c)

}.

Definition rpmul := func! (x, e) ∼> ret {

ret = $0;

while (e) {

if (e & $1) { ret = ret + x };

e = e >> $1;

x = x + x

}

}.

(b) Bedrock2 part of trap handler (using custom Coq notations to make it look similar to C)

Figure 3 Trap handler code
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Instance spec_of_softmul : spec_of "softmul" :=

fnspec! "softmul" inst a_regs / rd rs1 rs2 regvals R,

{ requires t m :=

mdecode (word.unsigned inst) = MInstruction (Mul rd rs1 rs2) ∧
List.length regvals = 32 ∧
seps [a_regs 7→ word_array regvals; R] m;

ensures t’ m’ := t = t’ ∧
seps [a_regs 7→ word_array (List.upd regvals (Z.to_nat rd) (word.mul

(List.nth (Z.to_nat rs1) regvals default)

(List.nth (Z.to_nat rs2) regvals default))); R] m’ }.

Figure 4 Specification of softmul function

The Bedrock2 code (Figure 3b) is written directly in Coq using the custom-notations192

feature, a C-like syntax, and operator precedence as suggested by whitespace. It extracts the193

three 5-bit fields of the instruction that indicate the two source registers (operands of the194

multiplication operation) and the destination register, respectively, and then calls another195

Bedrock2 function rpmul that implements multiplication in terms of addition, storing the196

result back into the scratch space. The rpmul function iterates over the bits of the second197

operand while repeatedly doubling the first operand, a technique sometimes called “Russian198

peasant multiplication.” Both softmul and rpmul are verified using the Bedrock2 program199

logic. The spec of the former is given in Figure 4.200

Its pre- and postcondition are expressed in terms of an (unused) I/O trace t and the201

memory m, for which we assert a list of two separation-logic clauses (a word array corresponding202

to the scratch space containing the register values, and a generic frame R for the rest of the203

memory).204

After the Bedrock2 part, the handwritten snippet inc_mepc runs. It increases the CSR205

called MEPC, which stores the address of the instruction that caused the exception, and upon206

returning from the trap handler (by the Mret instruction), execution will jump to MEPC, so we207

have to set it to one instruction (i.e., 4 bytes) past the multiplication instruction.208

And finally, in restore_regs3to31 and handler_final, the values of the user program’s209

registers are restored.210

5 Combining the Program-Logic Proofs and Compiler-Correctness211

Proof212

By combining the program-logic proofs about the two Bedrock2 functions with the compiler-213

correctness theorem, we can prove that if we run the compiler within Coq to obtain a list214

of instructions mul-insts, these instructions satisfy the specification shown in Figure 5, a215

verbose but unsurprising specification, laying out calling-convention details.216

Lines 5 to 6 specify in which registers the arguments need to be placed, and line 14217

requires that at address a_regs, there is an array of 32 words that store the values of the218

registers of the user program. Lines 18 to 20 state that after running mul-insts, the array at219

address a_regs storing the registers is updated at its rd’th index with the result of multiplying220

its rs1-th and rs2-th element, and line 23 states that the new registers of the processor (not221

the ones saved in memory) only differ from the original registers on the callee-saved registers.222

Note that the conclusion on line 27 refers to the same machine as the conclusion of223

the top-level theorem in section 3, namely the one described by (mcomp_sat (run1 idecode)),224
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1 Lemma mul-correct: forall initial a_regs regvals invalidIInst R (post: State→ Prop)
2 ret_addr stack_start stack_pastend rd rs1 rs2,
3 word.unsigned initial.(pc) mod 4 = 0→
4 initial.(nextPc) = word.add initial.(pc) (word.of_Z 4)→
5 map.get initial.(regs) RegisterNames.a0 = Some invalidIInst→
6 map.get initial.(regs) RegisterNames.a1 = Some a_regs→
7 map.get initial.(regs) RegisterNames.ra = Some ret_addr→
8 map.get initial.(regs) RegisterNames.sp = Some stack_pastend→
9 word.unsigned ret_addr mod 4 = 0→

10 word.unsigned (word.sub stack_pastend stack_start) mod 4 = 0→
11 regs_initialized initial.(regs)→
12 mdecode (word.unsigned invalidIInst) = MInstruction (Mul rd rs1 rs2)→
13 128≤ word.unsigned (word.sub stack_pastend stack_start)→
14 seps [a_regs 7→ with_len 32 word_array regvals;
15 initial.(pc) 7→ program idecode mul-insts;
16 mem_available stack_start stack_pastend; R] initial.(MinimalCSRs.mem) ∧
17 (forall newMem newRegs,
18 seps [a_regs 7→ with_len 32 word_array (List.upd regvals (Z.to_nat rd) (word.mul
19 (List.nth (Z.to_nat rs1) regvals default)
20 (List.nth (Z.to_nat rs2) regvals default)));
21 initial.(pc) 7→ program idecode mul-insts;
22 mem_available stack_start stack_pastend; R] newMem→
23 map.only_differ initial.(regs) reg_class.caller_saved newRegs→
24 regs_initialized newRegs→
25 post { initial with pc := ret_addr; nextPc := word.add ret_addr (word.of_Z 4);
26 MinimalCSRs.mem := newMem; regs := newRegs })→
27 runsTo (mcomp_sat (run1 idecode)) initial post.

Figure 5 The correctness lemma of the compiler-generated part of the handler

or box ➁ in Figure 1. But to get there, two more proof steps (➇ and ➈) are needed:225

In order to keep the Bedrock2 compiler (somewhat) general, it was not proven against a226

specific instantiation of the riscv-coq semantics, but against an axiomatization (box ➂) of227

the primitives used in riscv-coq such as getRegister, setRegister, loadByte, etc. However, to228

keep the Bedrock2 compiler proof manageable, the RISC-V machine state representation229

appearing in that axiomatization was hardcoded to a record type without CSRs (because230

compiler-emitted code never touches CSRs).231

An additional problem requiring some proof effort to show compatibility is that the232

compiler correctness proof assumes a machine with hardware support for multiplication, but233

we want to run its code on one without. By inspecting the code that it generated, we can234

see that it did not output any multiplication instructions, but if it did, this would lead to a235

serious bug: If during the execution of the trap handler, a multiplication instruction was236

encountered, the trap handler would be recursively invoked again, infinitely many times.237

We solve these two problems by introducing an intermediate helper machine (box ➃)238

that uses the same state representation (without CSRs) as the compiler, and maintains an239

invariant no_mul saying that the memory region marked as executable (which only includes240

the compiled handler code in that instance) contains no multiplication instructions.241

6 Correctness Proof of the Assembly Part242

The assembly part of the handler is proven correct by induction over the runsTo hypothesis243

of softmul-correct. If the machine with hardware multiplication executes any instruction244

besides multiplication, we just need to show that after executing the same instruction on245

the machine with software multiplication, the R judgment is preserved, but we can do that246

once-and-for-all by inspecting each primitive of the riscv-coq spec (getRegister, setRegister,247
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Definition raiseExceptionWithInfo{A: Type}(isInterrupt exceptionCode info: t): M A :=

pc← getPC;

(* hardcoded simplification: we only support machine mode and no interrupts *)

addr← getCSRField MTVecBase;

setCSRField MTVal (regToZ_unsigned info);;

(* these two need to be set just so that Mret will succeed at restoring them *)

setCSRField MPP (encodePrivMode Machine);;

setCSRField MPIE 0;;

setCSRField MEPC (regToZ_unsigned pc);;

setCSRField MCauseCode (regToZ_unsigned exceptionCode);;

setPC (ZToReg (addr * 4));;

@endCycleEarly M t MM MW MP A.

Figure 6 Specification (in riscv-coq) of what hardware does in case of an exception

loadByte, etc), instead of analyzing the much larger number of instructions that RISC-V248

has. The interesting case is when the machine with hardware multiplication encounters a249

multiplication instruction, and we have to show that the machine with software multiplication250

steps to a related state. We do so by first symbolically executing the specification of what251

the hardware does in case of an exception (Figure 6), which boils down to setting some CSR252

fields and then setting the PC to the exception-handler address found in the MTVecBase CSR.253

After that, we symbolically execute the handwritten assembly instructions, using Coq’s254

proof context to keep track of all the facts that we know about the current state of the255

machine. For each assembly instruction, we encounter its specification in terms of the256

primitives of riscv-coq, and for each primitive, we have a helper lemma that updates our257

symbolic state. At the point where we reach the call to the Bedrock2-generated code, we258

apply the correctness lemma for the compiled trap handler. After that call, we step through259

more handwritten assembly instructions that restore the registers and then call the Mret260

instruction that jumps back to one instruction past the multiplication instruction that caused261

the exception. At that point, we need to prove that the symbolic state accumulated in the262

Coq proof context implies that the two machines are still related by R, which only works if263

there are no bugs in the handler code.264

7 What If . . .265

To explain our specification from a different angle, we list a few potential bugs that an266

implementor could make, and show how they make our specification unprovable. Note that267

these are not bugs that actually occurred in our own implementation. For those, we refer to268

section 8.2. We present each potential bug as a question that begins with “What if . . .269

. . . the compiler used to compile the handler emitted a multiplication instruction, which270

would cause the handler to trigger itself recursively infinitely many times? When proving271

correctness of the handwritten assembly (section 6), when we get to the jump instruction272

that calls the code emitted by the Bedrock2 compiler, we need to apply the compiler273

correctness theorem (instantiated with the Bedrock2 part of our handler), but that274

theorem talks about execution on a machine with multiplication support, whereas the275

theorem we are about to prove is about execution on a machine without multiplication276

support. To make the proof work, we need to introduce box ➃ and steps ➇ and ➈ in277

Figure 1 as explained in section 5, which at some point requires us to go through the278

concrete list of instructions emitted by the compiler and checking that none of them is a279
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multiplication instruction.280

. . . the handler runs at a time when no stack exists or the stack does not have enough281

remaining space? The output of the Bedrock2 compiler contains a number that indicates282

the amount of stack space that the compiled code needs, and one hypothesis of the283

compiler correctness theorem is that at least that much space is available below the284

current stack pointer. In order to make sure this hypothesis holds, our trap handler uses285

a separate reserved scratch pad in memory as its stack, and when the correctness theorem286

for the handwritten assembly applies the instantiated compiler correctness theorem287

mul-correct, it has to prove that there are at least 128 bytes of space remaining in the288

scratch pad, as mandated by the hypothesis on line 13 in Figure 5.289

. . . the assembly that calls compiled Bedrock2 code makes wrong assumptions about the290

calling conventions of the compiler, e.g. which registers are used to pass arguments, or291

whether they are passed on the stack, in which direction does the stack grow, or which292

registers are caller-saved? All these conventions are also captured in the intermediate293

lemma mul-correct in Figure 5.294

. . . the handler forgot to increase MEPC, the CSR storing the address to which the295

machine jumps when we return from the exception handler, which would cause the296

faulting multiplication instruction to be run again, and would trigger the handler again?297

At the end of the handler correctness proof, this bug would lead to a mismatch between the298

state of the machine with multiplication support (whose program counter gets advanced299

past the multiplication instruction) and the state of the machine without multiplication300

support (whose program counter would still point to the multiplication instruction).301

. . . we ran a user program using compressed instructions (2-byte instructions) on our302

system? The riscv-coq specification only supports the uncompressed instruction format,303

where all instructions are 4 bytes long. There is no single location where the spec explicitly304

says “compressed instructions are not supported” – it requires an attentive reader who305

notices that the whole spec never mentions compressed instructions. In this scenario, our306

trap handler would fail to decode the unsupported instruction, and arbitrary behavior307

would occur. If riscv-coq did support compressed instructions, and our handler correctly308

decoded them, that would still require it to correctly decide whether to increase the309

MEPC by 2 or 4, and like in the previous point, one would notice the mismatch during310

the proof.311

8 Evaluation312

We attempt to answer the following evaluation questions (and dedicate one subsection to313

each of them):314

1. Does our verified trap handler run on a RISC-V system implemented by a third party?315

2. Did our implementation contain bugs that our verification caught?316

3. Did our implementation contain bugs that our verification failed to catch?317

4. Was the effort required for verification lower than the effort for debugging would have318

been?319

8.1 Running Our Handler320

To validate that our verified handler actually runs on a system not implemented by ourselves,321

we first looked for small embedded RISC-V processors without multiplication support, but322

could not find any product with enough documentation in English to make us want to try it323
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out. Instead, we chose to test our code in the Spike RISC-V ISA simulator [3], which offers324

fine-grained control over which RISC-V extensions are enabled.325

We want to test that our handler behaves as expected on a system that runs a simple326

C program with multiplications, compiled by a third-party compiler. We wrote a simple327

program which computes the factorial of a hardcoded number, and saves the result as well328

as a done flag to memory. We compiled it using the GNU RISC-V toolchain.329

Our toplevel theorem applies to a list of bytes called softmul-binary (mentioned in Figure 2330

in the definition of the relation R), representing a piece of position-independent RISC-V331

machine code. However, Spike expects as input an ELF file. We relied on the GNU RISC-V332

toolchain to transform our binary into an elf file, using a custom 25-line linker script.333

For our theorem to be applicable, the conditions that the relation R (Figure 2) imposes334

on r2 (the machine without support for multiplication) must hold on our Spike machine.335

The first six conditions above the exists are related to the formalization and do not require336

any special setup action. The two lines below the exists require that the MTVecBase and337

MScratch CSRs have suitable values, and we ensure this by running an assembly script at the338

beginning that initializes these two CSRs with addresses defined in our linker script. The339

last three lines are a bullet-point separation-logic clause list describing the memory, saying340

that it must contain all of the specification machine’s memory r1.(mem), as well as 256 bytes341

of scratch memory at the address in the MScratch CSR and the softmul-binary at the address342

in the MTVecBase CSR. Our linker script, together with the memory-layout command-line343

argument we pass to Spike, ensures that these conditions hold.344

Spike comes with its own small language of debugger commands, and we used it to run345

the system until the done flag in memory is 1, then print the value of the memory at the346

address where we expect the result, and also print the value of the CSR register minstret,347

the number of retired instructions, to see how many instructions were executed.348

No matter whether we invoked Spike with or without multiplication enabled, we observed349

the same result for factorial(5), namely 120. With multiplication enabled, the number of350

instructions was 87, and with multiplication disabled, the number of instructions increased351

to 787, which shows that our handler indeed ran. As an additional sanity check, we also352

confirmed that it stops working if we set the MTVecBase CSR to a different value.353

Therefore, at least for this one simple example, we can answer question 1 with ‘yes’.354

8.2 Bugs Caught During Verification355

At the end of the proof that steps through the handwritten handler assembly, we need to356

prove that the symbolic state accumulated in the Coq proof context implies that the two357

machines are still related by R, which only works if there are no bugs in the handler code (see358

end of section 6). At that point, we found two interesting bugs. The first one was that we359

forgot to reset the MScratch CSR, so one invocation of the exception handler works fine, but360

the next one will use a wrong address for its scratch space. The second bug was the corner361

case where the multiplication instruction stores its result into the stack pointer. In that case,362

we must not override the stack pointer with the original stack pointer that we swapped into363

the MScratch register at the beginning of the handler.364

We also found two more obvious bugs related to when to set the stack pointer and what365

stack-pointer offsets to use.366

So we can answer question 2 with ‘yes’.367
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8.3 Bugs Encountered While Trying to Run It368

We split the development of our experiment into two phases: First, we set up the linker script,369

with the trap handler already in place, but inactive, because we enabled the M extension.370

Once this experiment produced the expected output, we deactivated the M extension, so371

that our handler would run.372

Getting phase 1 to work required some debugging. The most difficult part was to373

understand how to pass the linker-script defined address of the heap memory to the C374

program, and required reading the relevant page3 of the GNU Linker’s manual, which starts375

by saying that “accessing a linker script defined variable from source code is not intuitive”,376

and further down explains that “when you are using a linker script defined symbol in source377

code you should always take the address of the symbol, and never attempt to use its value”.378

None of the code involved in phase 1 was verified, so it is not surprising that debugging379

was required. And to our delight, in phase 2, as soon as we disabled the M extension, our380

verified trap handler worked on the first try, and no debugging was needed at all.381

So, to answer question 3, there were bugs in the unverified part, but no bugs in the382

verified part.383

In the future, it would be interesting to also verify ELF file generation, and we believe384

that this could have prevented the above bug.385

8.4 Effort386

For lack of better measures, we resort to lines of code counts as a very approximate measure387

of effort. Table 1 lists the lines of code counts of the different components.388

It suggests that to produce 76 lines of verified code, a total of 3331 lines of code was389

necessary, which is more than a 40× blowup. This ratio looks not very appealing, but it still390

seems fair to say that for tricky code, large proofs are sometimes needed. We also have some391

(potentially alleviating) remarks for each row of the table:392

The RISC-V helper instance is not referenced by the toplevel theorem statement, but393

acts as a bridge between the RISC-V spec used by the Bedrock2 compiler (whose state394

does not contain any CSRs) and the one used in the toplevel theorem (whose state does395

have CSRs). Additionally, the helper instance maintains the invariant that no executable396

instructions are from the M extension, which is important during the execution of the397

trap handler, because if the trap handler contained a multiplication instruction, the trap398

handler would be invoked recursively over and over again. The helper instance and its399

accompanying lemmas are mostly copied from the one used in the compiler, and careful400

refactoring to share the code with the compiler could considerably reduce this count,401

which also means that these lines were low-effort to produce.402

To verify multiplication and a simple instruction decoder in Bedrock2, we used the original403

Bedrock2 program logic [8], which only automates the application of weakest-precondition404

rules, but does not provide any automation for sidecondition solving. Using a framework405

that provides more automation would have reduced this proof size.406

A large chunk of the proof lines (1454) is in the correctness proof of the trap handler407

parts written in assembly. The reason for this verbosity might be that, to our knowledge,408

this project is the first within the Bedrock2 ecosystem to verify more than two or three409

lines of assembly at a time, so there was no assembly-specific framework available. About410

3 https://sourceware.org/binutils/docs/ld/Source-Code-Reference.html

https://sourceware.org/binutils/docs/ld/Source-Code-Reference.html
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impl spec proof total
RISC-V helper instance 0 101 309 410
Multiplication in Bedrock2 8 5 83 96
Instruction decoder in Bedrock2 7 27 80 114
Trap handler in assembly 36 28 1454 1518
Compiler compat & invocation 14 47 716 777
Toplevel theorem 11 18 147 176
Excluded (imports & comments) 240
Total 76 226 2789 3331

Table 1 Lines of code counts, excluding the dependencies (coqutil, riscv-coq, Bedrock2, and the
Bedrock2 compiler)

two thirds of the proof code could probably be factored out into a framework that would411

be reusable for other assembly programs as well. We also did not spend too much412

time on sidecondition automation, which could further reduce the number of proof lines.413

We conjecture that in a more mature assembly verification framework, the assembly414

part trap handler proof might be as short as maybe 100 lines of code. Moreover, the415

code to proof ratio also looks bad because we count the number of lines of Coq code416

rather than the number of assembly instructions, which matters for save_regs3to31 and417

restore_regs3to31: Each of these is just a two-line functional program, but expands to 29418

assembly instructions.419

The compiler compat & invocation code deals with the different RISC-V instances and420

decoders, and also applies the Bedrock2 compiler’s correctness theorem for the instruction421

decoder and multiplier implemented in Bedrock2. It consists of important but not422

particularly interesting bookkeeping that quickly adds up to many lines of proof.423

Finally, the toplevel theorem puts everything together. It requires some helper lemmas424

that could probably be generalized and moved to a library, but the fact that these lemmas425

were not already present in any library used in the Bedrock2 ecosystem seems fairly426

representative of the general verification experience, so it seems fair to count these lines.427

Finding the bugs described in section 8.2 through debugging (especially the first two)428

might have been quite hard, but would probably still not have taken as long as our verification429

effort took, so the answer for question 4 is probably a ‘no’.430

But we can imagine a promising world where the proof burden becomes lower than the431

debugging burden and verification becomes a part of most systems developer’s toolboxes.432

9 Related Work433

A number of projects have attempted to verify the interaction between (some or all of)434

C code, its compilation, handwritten assembly code, and trap handlers.435

In the context of the Verisoft project, Alkassar et al. [4] verified a virtual memory system436

that can swap out virtual memory pages onto disk. If an address is accessed that currently437

is on disk, a page fault is triggered, and a verified page fault handler runs. Their correctness438

statement says that a physical machine with the page fault handler can simulate a virtual439

machine (by which they mean a machine that provides to a user process a linear memory440

covering the whole address space). Their handler is implemented in C0 (a subset of C)441

with some inline assembly, which is modeled as external calls that modify additional state442
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that cannot be modified directly from C0. That is, they call assembly from C, whereas we443

chose the opposite direction, calling C (or the C-like language Bedrock2, in our case) from444

assembly. In their project, saving and restoring of registers before and after the handler are445

not implemented in assembly and verified like we do, but are part of the semantics of the446

physical machine.447

BabyVMM [17] proves correctness of a simple virtual memory manager by showing that448

for all kernel implementations, linking the kernel with the virtual memory manager and449

running it on a machine with only physical memory (“hardware model” HW) behaves like450

running the kernel on a machine with an address space whose lower part is physical memory,451

and whose upper part is virtual memory (“address space model” AS). It is implemented in a452

C-like language, and no compiler nor assembly code appears in the formalization. Instead,453

the theorem is stated in terms of C semantics. It also does not mention any page fault454

handlers.455

The verified microkernel seL4 [12] is implemented in C, but some small parts are hand-456

written assembly and are not verified [14, sections 4.4 and 4.8]. Contrary to our approach of457

using a verified compiler, they apply translation validation to the binary generated by GCC458

and certify using SMT solvers that it behaves like the C program.459

CertiKOS [10, 11, 7] is a verified OS kernel. By means of certified abstraction layers, it460

fully captures the behavior of each component in a deep specification, so that from the outside,461

it does not matter whether the component is implemented in C or in assembly, thus achieving462

interoperability at the proof level between C and assembly. Its correctness is expressed as463

a contextual refinement, based on CompCert’s [15] notion of a backward simulation, but464

extended with a universal quantification over all possible surrounding programs (contexts):465

It states that for all assembly programs, all behaviors of that assembly program when466

linked with the low-level kernel can be simulated by the same program when linked with467

the high-level kernel specification. It relies on a notion of linking, and uses CompCert’s468

formalization of assembly, which is still fairly high-level compared to binary machine code,469

eg. jumps use labels instead of offsets or addresses, and there are instructions that allocate470

and free a stack frame that do not correspond to any machine instructions. CompCert’s471

assembly (which is used to model CertiKOS’ lowest layer) also does not model CSRs, whereas472

riscv-coq, on which our project is based, does, so to model trap handlers at our level of detail,473

the assembly (or machine) model would have to be extended.474

CompCertELF [18], a different project by the same group, extends CompCert to also475

cover machine code generation and uses a more realistic memory model, without the stack476

frame allocation/freeing instructions mentioned above. As far as we know, CompCertELF477

has not (yet) been integrated with CertiKOS, and is not publicly available. If it was, and if478

we managed to make CompCertELF compatible with our project, it could have helped to479

prevent the bug (section 8.3) we encountered in our unverified usage of the GNU linker to480

turn our plain binary into an ELF file.481

Goel et al. [9] verify a subset of the instructions of an x86 processor which decodes x86482

instructions and translates them into micro-operations before executing them. For the more483

complex instructions, the generated micro-operations contain a trap that causes a jump to484

microcode stored in a ROM. Similarly to our theorem, they prove that this processor behaves485

as if there were no micro-operations, traps or microcode, and instructions were executed486

according to a high-level x86 specification.487

In the CakeML world, there is ongoing work on Pancake [16], a low-level language for488

device drivers. It comes with a verified compiler that reuses significant parts of the backend489

of the CakeML compiler [13]. It does not support inline assembly, and the paper does not490
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report on verified handwritten assembly code that would call Pancake-generated assembly.491

Instead, all interaction with devices is modeled as external calls at the moment.492

10 Conclusion and Future Work493

We have shown a pleasantly simple way of specifying the correctness of a trap handler494

that emulates unsupported instructions in software, and proved that our implementation of495

such a trap handler combining handwritten assembly and compiler-generated code satisfies496

this specification by combining symbolic-evaluation proofs about assembly and Bedrock2497

programs with the correctness proof of the Bedrock2 compiler, and by proving that the498

output of the Bedrock2 compiler, which assumes a machine without CSRs and with hardware499

support for multiplication, also runs correctly on a machine with CSRs, but without hardware500

support for multiplication.501

Being able to state and prove a theorem saying that user programs on a machine without502

hardware support for multiplication but a trap handler to emulate it behave as if they ran503

on a machine with hardware support for multiplication constitutes a first step towards the504

more ambitious goal of thoroughly proving correctness of a virtual memory system, stated505

in a similar flavor by saying that user programs running on a system with virtual memory506

(implemented by a combination of hardware, assembly, and C) behave as if they were running507

on a machine where the user program can use the full physical address space.508
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