
Techniques for Foundational End-to-End Verification of
Systems Stacks

by

Samuel Gruetter

BSc., Ecole Polytech Fed De Lausanne, 2013

MSc., Ecole Polytech Fed De Lausanne, 2017

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2025

© 2025 Samuel Gruetter. This work is licensed under a CC BY-ND 4.0 license.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license to

exercise any and all rights under copyright, including to reproduce, preserve, distribute and

publicly display copies of the thesis, or release the thesis under an open-access license.

Authored by: Samuel Gruetter

Department of Electrical Engineering and Computer Science

September 12, 2024

Certified by: Adam Chlipala

Arthur J. Conner (1888) Professor of Computer Science

Thesis Supervisor

Accepted by: Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science

Chair, Department Committee on Graduate Students

https://creativecommons.org/licenses/by-nd/4.0/

2

Techniques for Foundational End-to-End Verification of Systems Stacks
by

Samuel Gruetter

Submitted to the Department of Electrical Engineering and Computer Science

on September 12, 2024 in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

ABSTRACT

Today’s software is full of bugs and vulnerabilities. Formal verification provides a promising

remedy through mathematical specifications and machine-checked proofs that the implementa-

tions conform to the specifications. However, there could still be bugs in the specifications or in

the verification tools, which could lead to missed bugs in the software being verified. Therefore,

this dissertation advocates for foundational end-to-end verification, a proof-based software devel-

opment method that can mitigate both of these concerns:

It is end-to-end in the sense that the correctness proofs of individual components are used to

discharge the assumptions of adjacent components throughout the whole stack, resulting in end-

to-end theorems that only mention the top-most and bottom-most specifications, so that bugs in

intermediate specifications cannot invalidate the soundness of the end-to-end statement anymore.

The method is foundational in the sense that the soundness of the proofs relies only on the

foundations of mathematics and on the correctness of a small proof-checking kernel, but not on

the correctness of other, domain-specific verification tools, because these tools are either proven

correct once-and-for-all, or they output proofs that are checked by the kernel.

Ensuring that all the reasoning can be checked by the same small foundational kernel requires

considerable effort, and the first part of this dissertation presents techniques to reduce this effort:

Omnisemantics, a new style of semantics that can be used instead of traditional small-step or

big-step operational semantics, offer a smooth way of combining undefined behavior and non-

determinism, and enable forward-simulation compiler correctness proofs with nondeterministic

languages, whereas previous approaches need to fall back to the much less convenient backward

simulations if support for nondeterminism is needed.

Live Verification is proposed, a technique to turn an interactive proof assistant into a program-

ming assistant that displays the symbolic state of the program as the user writes it and allows

the user to tweak the symbolic state as long as the tweaks are provably sound. An additional

convenience-improving feature is that instead of stating lengthy loop invariants, the user only

needs to give the diff between the symbolic state before the loop and the desired loop invariant,

resulting in shorter and more maintainable annotations. Finally, in order to make Live Verification

practical, a number of additional proof techniques is presented.

The second part of the dissertation shows how these techniques were useful in three collabora-

tive case studies: An embedded system running on a verified processor with an end-to-end proof

where the software-hardware interface specification cancels out, a cryptographic server with an

end-to-end proof going from high-level elliptic-curve math all the way down to machine code,

3

and a trap handler to catch unsupported-instruction exceptions whose correctness proof combines

program-logic proofs about C-level functions, a compiler correctness proof, and proofs about hand-

written assembly.

Thesis supervisor: Adam Chlipala

Title: Arthur J. Conner (1888) Professor of Computer Science

4

Acknowledgments

First, I thankmy advisor, Professor AdamChlipala, for advising and supportingme, and for creating

a unique environment where exciting multi-person multi-year projects combining software proofs

and hardware proofs can be carried out, and for reassuring me that with a project of this size, it is

absolutely fine to publish the first paper only after 4 years.

I also thank Professor Frans Kaashoek and Professor Armando Solar-Lezama for serving on my

thesis committee and for providing me with interesting food for thought during our meetings.

Many parts of this thesis were collaborations, and I deeply thank my colleagues Andres Erb-

sen and Thomas Bourgeat for the inspiring collaborations and discussions and for everything they

taught me. Many thanks also go to all my co-authors, without whom the work described in this

dissertation would not have been possible: Arthur Charguéraud, Joonwon Choi, Ian Clester, Vik-

tor Fukala, Dustin Jamner, Ashley Lin, Jade Philipoom, Clément Pit-Claudel, Pratap Singh, Clark

Wood, and Andy Wright.

I would also like to thank Frédéric Besson from the Coq development team for his work on the

solver for linear integer arithmetic. Over the course of several years, I reported many issues and

limitations about it, and he fixed all of them, until I did not report any more issues – not because

I got tired of it, but because the tactic had become so good that I did not run into issues anymore,

despite heavy use over several years.

There are also many people who made my time here in Boston very enjoyable: people who are

my friends, colleagues, roommates, outdoor buddies, some or all of these at same time. Thank you

to Axel, Ben, Brett, Clément, Emma, Eric, Min Ho, Quan, Reyu, Sara, Stella, Thomas, and Twan.

A big thank you also to my “jolly mad” friends (you know who you are ;-)) in Switzerland, for

keeping in touch with me so well despite me moving to the “wrong” side of the Atlantic.

And finally, I want to thank my parents and my brother for always being there for me.

5

6

Contents

Title page 1

Abstract 3

Acknowledgments 5

List of Figures 13

List of Tables 15

1 Introduction 17

1.1 Is it Just as Easy as “Apply Modus Ponens”? . 19

1.2 Contributions . 20

1.2.1 Case Studies in Foundational End-to-End Systems Verification 21

1.2.2 Building Blocks . 22

1.2.3 Techniques . 23

1.3 Structure of the Dissertation . 25

I Techniques and Building Blocks 27

2 Omnisemantics 29

2.1 Undefined Behavior and Nondeterminism . 29

2.2 Background and Baseline: Big-Step and Small-Step Operational Semantics 31

2.2.1 Expressing Undefined Behavior and Nondeterminism 32

2.3 Problems Arising When Combining Undefined Behavior and Nondeterminism . . . 32

2.3.1 Problem 1: Expressing That Every Execution Safely Terminates in a State

Satisfying Some Postcondition . 33

7

2.3.2 Problem 2: How to Use Forward Simulations in the Presence of Nondeter-

minism . 35

2.3.3 Problem 3: How to Prove Progress & Preservation in One Linear-Size Proof 38

2.4 The Big-Step Omnisemantics Judgment . 41

2.4.1 Relationship to Traditional Semantics . 41

2.4.2 Solving Problem 1: It Works By Definition 42

2.4.3 Solving Problem 2: Omnisemantics Forward Simulations Just Work 42

2.4.4 Solving Problem 3: Progress and Preservation in One Go 43

2.4.5 Overapproximation of the Set of Results . 43

2.5 The Small-Step Omnisemantics Judgment . 44

2.6 All Roads Lead to Omnisemantics . 45

2.7 Related work . 49

3 The Bedrock2 Verified Compiler 51

3.1 Advantages of the Bedrock2 Compiler . 52

3.2 The Bedrock2 Source Language . 57

3.3 Compilation Phases . 59

3.4 Parameterization over the External-Calls Compiler 62

3.5 How (not) to Compose Compiler Phase Correctness Proofs 63

3.5.1 Approach 0: No Explicit Concept of Phase Composition 63

3.5.2 Approach 1: Chaining Simulations and State Relations 64

3.5.3 Approach 2: Per-Language Initial-State and Final-State Predicates 65

3.5.4 Approach 3: Per-Language Function-Call Specs 66

3.5.5 Conclusion . 69

4 Formal Semantics For an Industrial ISA 71

4.1 Abstracting Over Use Cases . 72

4.2 Translating Haskell to Coq . 72

4.3 Typeclass Instances for Interactive Theorem Proving 74

4.3.1 Simulator in Coq . 75

4.3.2 Adding Instruction Counters . 76

4.3.3 Nondeterminism . 76

4.3.4 Runtime Input . 77

4.3.5 Nondeterminism by Means of Weakest Preconditions 77

8

5 Live Verification 79

5.1 Introduction . 80

5.1.1 A First Glance At an Example . 82

5.2 Background . 82

5.2.1 Weakest-Precondition Generators . 82

5.2.2 Forward Symbolic Execution Using aWeakest-Precondition Generator 84

5.2.3 Using WP Rules instead of a WP Generator 85

5.2.4 Editing Coq Proofs: Proof Goals and the Proof Cursor 86

5.2.5 Evars in Coq: Lazily Instantiated Existential Variables 87

5.2.6 A Use Case of Evars: Deriving a Definition Based on its Proof 87

5.3 Overview: Writing and Compiling a Sample Program 88

5.3.1 Guided Tour Through the memset Example 88

5.3.2 Tradeoffs Between Three Different Ways of Compiling 94

5.4 User Interface . 95

5.4.1 New Separation-Logic Concepts . 95

5.4.2 Defining Record Predicates Using C Syntax 96

5.4.3 IDE Extensions . 96

5.4.4 Expressing a Loop Invariant as a Diff from the Current Symbolic State . . . 97

5.4.5 Treating While Loops as Tail-Recursive Calls 98

5.4.6 Variable-Naming Scheme . 99

5.4.7 Context Packaging and Merging for if-then-else 101

5.4.8 Optimize the User Experience for Failing Proofs Instead of Working Proofs 102

5.4.9 Automated Splitting and Merging of Separation Logic Clauses 108

5.5 Implementation Notes . 109

5.5.1 Parsing C in Coq . 109

5.5.2 Tailored Weakest-Precondition Lemmas . 109

5.5.3 Extracting Pure Facts From Sep Clauses . 111

5.5.4 Pattern-Based Selective Warning Suppression 111

5.5.5 Mixed Word/Integer Arithmetic Side Conditions 111

5.5.6 Undoable, Reusable ℤification . 112

5.5.7 On-Demand Addition of Callee-Correctness Hypotheses 112

5.5.8 Discussion . 113

5.6 Evaluation . 116

5.6.1 Scope of Sample Programs . 116

9

5.6.2 Qualitative Discussion of Loop-Invariants-as-Diff Approach 117

5.6.3 Some Statistics . 118

5.7 Related Work . 119

5.8 Conclusion and Future Work . 122

5.9 Listing of Notations . 123

6 Simplification of Expressions Describing Symbolic State 127

6.1 Problem . 127

6.1.1 Going Beyond Rewrite Rules: The Need for Custom Procedures 128

6.2 Related Work . 129

6.3 Attempt 1: Ad-Hoc Rewrites and Simplifications . 130

6.4 Attempt 2: E-Graphs . 131

6.5 Current Solution . 131

6.6 Preliminary Evaluation . 132

II Case Studies 133

7 Overview 135

8 IoT Lightbulb 137

8.1 Related Work and Concepts . 137

8.1.1 Verifying Implementations Against a Spec 137

8.1.2 Tool Verification . 138

8.1.3 Integration Verification . 138

8.1.4 Alternatives to Integration Verification . 139

8.1.5 Push-Button Integration Verification versus Modularity and Guaranteed

Reusability . 139

8.1.6 Height of the Verified Stack . 141

8.1.7 Verified Software-Hardware Integration . 141

8.1.8 Verified Hardware Optimizations . 142

8.1.9 Contributions . 143

8.2 Overview . 143

8.2.1 The End-to-End Theorem . 145

8.2.2 The Trace Predicate . 146

10

8.3 Implementation . 148

8.3.1 An Infinite Loop Despite Using a Termination-Sensitive Program Logic . . . 148

8.3.2 Interfacing Hardware and Software . 149

8.3.3 Bridging Two Different Styles of Semantics 149

8.3.4 I/O Throughout the Stack . 151

8.3.5 Pipelining and Instruction Memory Consistency 154

8.4 Conclusion . 155

9 The Garage Door: Foundational Integration Verification of a Cryptographic Server 157

9.1 The End-to-End Theorem . 159

9.1.1 Network Protocol Specification . 160

9.1.2 RISC-V Machine Code for Memory-Mapped I/O and Infinite Loops 161

9.2 Different Techniques Combined . 162

9.3 Evaluation . 165

9.3.1 Performance . 165

9.3.2 Effort and Project Size . 165

10 Softmul: Verifying Software Emulation of an Unsupported Hardware Instruction 167

10.1 Introduction . 168

10.2 Overview . 169

10.3 The Top-Level Theorem Statement . 171

10.4 The Handler Code . 173

10.5 Combining the Program Logic Proofs and Compiler Correctness Proof 177

10.6 Correctness Proof of the Assembly Part . 178

10.7 What If . 179

10.8 Evaluation . 181

10.8.1 Running Our Handler . 181

10.8.2 Bugs Caught During Verification . 182

10.8.3 Bugs Encountered While Trying to Run It 183

10.8.4 Effort . 183

10.9 Related Work . 185

10.10 Conclusion and Future Work . 187

11 Analysis of the Auditing Burden in the Case Studies 189

11.1 Lightbulb . 190

11

11.1.1 Auditing the Theorem Statement . 190

11.1.2 Auditing the Implementation . 192

11.1.3 Comparison . 192

11.2 Garage Door . 193

11.2.1 Auditing the Theorem Statement . 193

11.2.2 Auditing the Implementation . 193

11.2.3 Comparison . 195

11.3 Softmul . 195

11.4 Related Work: Parfait . 195

11.5 Conclusion . 196

III Conclusion 199

12 Conclusion 201

IV Appendix 205

A Coq Code for Composing Simulations 207

B Sample Log of Running the step Tactic Repeatedly 211

C More LOC Counts 217

Bibliography 230

12

List of Figures

2.1 Selected rules in traditional big-step and small-step operational semantics 31

2.2 Representing undefined behavior and nondeterminism in state transition diagrams 33

2.3 Proving that one path to a state satisfying the postcondition exists is not sufficient . 34

2.4 Different simulations . 39

2.5 Selected big-step omnisemantics rules . 40

2.6 Selected small-step omnisemantics rules . 44

2.7 Lifting small-step judgments to multiple steps . 45

2.8 Inductive and coinductive definition of the omnisemantics always judgment 45

3.1 Making an assumption an axiom vs. making it a hypothesis 55

3.2 Grammar of the Bedrock2 source language . 58

3.3 Phases of the Bedrock2 compiler . 60

3.4 Chaining state relations vs. relating phase-specific states to a common state 66

3.5 Replacing a direct relation 𝑅12 by a detour through a common state 𝑆𝑐 67

4.1 The primitives, hand-translated to Coq . 73

4.2 Semantics of the store-word instruction . 74

5.1 memset example . 83

5.2 Datatype to represent C snippets and some of the notations for parsing them 91

5.3 Some weakest-precondition rules . 91

5.4 Loop-invariant definition using a diff script . 93

5.5 Three equivalent definitions, using different notations 97

5.6 Viewing a do-while loop as a tail-recursive function 100

5.7 Weakest-precondition lemma for if-then-else . 101

5.8 The specification as well as the final, correct implementation of safeCopySlice . . . 104

5.9 Proof goal before Memcpy . 105

13

5.10 Postcondition at the end of a buggy binary-search-tree insert 108

5.11 Tailored Weakest-Precondition Lemmas . 110

8.1 System demo . 145

9.1 Top-level correctness theorem . 159

9.2 Client-server interaction . 160

9.3 Overview of components and specifications . 162

9.4 Inputs of the Bedrock2 compiler . 164

10.1 Multiplication trap handler overview diagram . 170

10.2 The predicate relating high-level states to low-level states 173

10.3 Assembly part of trap handler . 175

10.4 Bedrock2 part of trap handler . 176

10.5 Specification of softmul function . 176

10.6 The correctness lemma of the compiler-generated part of the handler 178

10.7 Specification (in riscv-coq) of what hardware does in case of an exception 179

A.1 Standalone backward simulation composition proof in Coq 207

A.2 Standalone omnisemantics simulation composition proof in Coq 208

A.3 Standalone call spec composition proof in Coq . 209

14

List of Tables

5.1 Different Ways of Compiling . 95

5.2 Statistics on our case studies . 117

5.3 Tradeoffs in the design space around loop-invariant automation 118

8.1 Comparison of the height of the verified stack and other evaluation criteria 144

9.1 Client-side performance measurements of different implementations 165

9.2 New and total lines of code of the project . 166

10.1 Lines-of-code counts, excluding the dependencies 185

11.1 LOC counts of the TCB of the lightbulb case study 191

11.2 Implementation LOC of lightbulb case study . 191

11.3 LOC counts of the TCB of the garage door top-level correctness statement 194

11.4 LOC counts of the garage door implementation . 194

11.5 Comparison of components in the TCB in different approaches 197

C.1 LOC counts of the compiler implementation . 217

C.2 LOC counts of the Kami 4-stage processor . 218

15

16

Chapter 1

Introduction

When building computer systems, one combines many components: hardware and many lay-

ers of software, usually consisting of some handwritten assembly code, more low-level code and

performance-critical code in C or a C-like language, and higher-level application code, compiled

and linked using different tools.

The individual components are usually created by many different teams of people, and making

sure that a system behaves as expected is hard: On one hand, each individual component needs to

be correct, but even if each component’s team believes that their component is correct, there might

still be bugs because different teams do not agree on what “correct” means for their components:

One component might make some reasonable-looking assumptions about its usages, while another

component using it makes slightly different and subtly incompatible assumptions that also look

reasonable in isolation.

To give just one example, a C application might invoke memcpy with a pointer argument that

might be NULL in the cases where the number of bytes to copy is 0, and its authors might argue

that this is okay because no bytes are read or written, while the GCC authors exploit the fact that

according to the C standard, programs that pass NULL pointers to memcpy (and other standard library

functions) have undefined behavior, and therefore they optimize the programs under the assump-

tion that all pointers passed to memcpy unconditionally are non-NULL, which can lead to the deletion

of NULL checks [Langley, 2016].1

Formal methods, by means of formal specifications and machine-checked proofs, seem to pro-

vide a promising solution to both the problem of ensuring that each individual component is correct

and the problem of ensuring that the assumptions that the components make about each other are

compatible. But unfortunately, while formal methods have been applied extensively to the for-

1
Thanks to my colleague Andres Erbsen for pointing me to this interesting blog post.

17

mer problem, much less work has applied them also to the latter. In particular, if one uses the

correctness proof of one component (e.g. a program proven correct against some formal program-

ming language semantics) to discharge the assumptions of an adjacent component’s correctness

theorem (e.g., a compiler assuming the same programming language semantics as its source lan-

guage semantics), one can combine the correctness proofs of the two adjacent components into

a new theorem whose statement does not need to mention the intermediate specification (in this

example, the source language semantics) anymore. In principle (but not necessarily in practice, as

we will discuss shortly in section 1.1), by applying thismodus ponens rule to all correctness proofs

of adjacent layers throughout a whole stack, one can obtain an end-to-end theorem where all the

intermediate specifications cancel out, and only the specifications of the top-most and bottom-

most layers remain part of the theorem statement, which can then serve as a concise description

of the overall behavior of the system.

Such an end-to-end theorem can significantly reduce the auditing burden for people who wish

to convince themselves that a system behaves as expected: While auditing a traditional, unver-

ified system requires auditing all its code, and auditing a system whose individual components

have been verified requires auditing each component’s specification as well as checking that the

specifications of adjacent components match, auditing a system with an end-to-end theorem only

requires auditing this single theorem statement (and the definitions it references, relating to the

top-most and bottom-most layers).

An auditor might also doubt whether the tools that were used to verify the components are

correct, because bugs in a verification toolmight lead tomissed bugs in the programs being verified.

To give just one concrete example, in the same way as one might forget a necessary arithmetic

overflow check in a program, the implementers of a verification tool might also forget to perform

a symbolic overflow check in the verification condition generator of a verification tool. But more

interestingly, when combining different verification tools, and feeding them the “same” specs as

inputs, there might still be bugs at the boundary between different layers that are checked by

different verification tools: For example, let us consider the program snippet arr[i mod len] = v,

where arr is an array, len is its length, and i and v are user-provided values. Suppose this snippet,

equipped with suitable pre- and postconditions, passes verification by an application verification

tool, and is compiled by a compiler which was verified using a compiler verification tool. Now,

if the application verification tool’s semantics for the modulo operator assume that 𝑎 mod 𝑏 is

always in the interval [0, 𝑏 [, while the compiler verification tool’s semantics and the compiler

implementation use a definition of modulo that can return results in the interval]−𝑏,𝑏 [, we can
end up in a situation where both the application verification tool and the compiler verification tool

18

report successful verification, and yet, when the program is run, a malicious user who provides a

negative value for i could overwrite some memory outside of the array with an arbitrary value v,

opening the door for all kinds of remote code execution attacks – a blatant failure of the whole

verification endeavor.

To address this concern of bugs in verification tools or incompatibilities between different veri-

fication tools, this thesis does foundational verification, as defined byAppel [2001]: “A foundational

proof is one from just the foundations of mathematical logic,” that is, in our case, the calculus of

inductive constructions as implemented in the Coq proof assistant. In order to trust Coq proofs,

one only needs to trust that Coq’s (reasonably small) proof-checking kernel is correct, while all

other tools are proven correct once-and-for-all or create proofs that are checked by Coq’s kernel.

Ensuring that all the reasoning can be checked by the same small foundational kernel requires

considerable effort. Therefore, Part I of this dissertation presents a number of proof techniques

that facilitate the verification of individual components as well as the composition of such proofs.

And in order to demonstrate that these techniques can indeed be composed into end-to-end the-

orems where the intermediate specifications cancel out, Part II of this dissertation describes three

case studies using these techniques, thus validating their usefulness towards the goal of creating

systems that are easy to audit thanks to their small trusted code bases.

1.1 Is it Just as Easy as “ApplyModus Ponens”?

Composing proofs about individual components into end-to-end-theorems might look as easy as

just applying modus ponens, but, as a look at some state-of-the-art projects from related work

shows, many of them ended up with specifications that seem hard to compose and therefore have

not been combined into end-to-end theorems where the intermediate specifications cancel out,

thus missing out on a prime opportunity to reduce the trusted code base (TCB) and foregoing one

of the benefits of using general-purpose interactive proof assistants.

In the Verified Software Toolchain [Appel et al., 2014], the definition of a Hoare triple {𝑃} 𝑐 {𝑄}
is (ignoring step-indexing) phrased using continuations, roughly: “for all states 𝑠2 satisfying𝑄 and

for all continuations (≈ C code snippets) 𝑘 , if it is safe to run 𝑘 in 𝑠2, then it is also safe to run

𝑐 followed by 𝑘 in any state 𝑠1 satisfying 𝑃” [Appel and Blazy, 2007]. Even though VST’s Hoare

triples have been proven sound with respect to small-step C semantics of the CompCert verified C

compiler [Leroy, 2009a], it is not clear how easy or hard it would be to compose this continuation-

based definition, a concrete verified source program, and the CompCert correctness proof into

one theorem where the C semantics cancel out, and we are not aware of any work that actually

19

composed a VST program logic proof with the CompCert compiler proof.
2

CompCert’s backward simulation is a somewhat intricate definition consisting of a Prop record

of seven properties,
3
even though CompCert proves quite a nice specification preservation theo-

rem
4
as a corollary of the main correctness theorem, which looks like it might be composable.

CertiKOS [Chen et al., 2018] also uses quite a bit of a “lock-in”-prone style: Its top-level correct-

ness theorem roughly says that for all assembly programs, if you link it with the kernel assembly

to get a low-level system and also link it with the high-level kernel spec to get a high-level system,

then there is a backward simulation between the high-level and low-level system. On one hand

this is a very strong correctness property, but on the other hand, it relies on some quite partic-

ular notions, namely a notion of linking CompCert assembly, a notion of linking assembly with

a high-level spec, and a CertiKOS-specific notion of backward simulation based on the backward

simulation of their modified CompCert. They have nice lemmas to compose such refinements. So

as long as one stays in this setup, everything works, but breaking out of it, in order to compose

with proofs that do not use this setup, looks hard.

Similarly, in the DeepSpec web server [Zhang et al., 2021], whose goal was to connect Coq de-

velopments from several research groups and to cancel out the intermediate specifications [Appel

et al., 2017, sections 3)a)ii) and 3)c)i)], no theorem refers to both UPenn’s and Yale’s codebases, and

the achieved level of integration is limited to using the same definition of interaction trees [Xia

et al., 2019] in both codebases, but these interaction trees seem to still appear inside a framework-

specific statement from which they were unable to escape.

1.2 Contributions

The contributions of this thesis are of three kinds. In increasing order of generality, they are: First,

I contributed to three case studies that push the boundaries of what is possible in foundational end-

to-end systems verification. Second, I developed building blocks that enabled these case studies

and could be reused for further case studies. Third, and perhaps most importantly from a research

point of view, I developed techniques to facilitate foundational systems verification in interactive

proof assistants.

2
Also confirmed in a discussion with William Mansky in January 2024 at POPL and in Lennart Beringer’s presen-

tation at AppelFest in May 2024, which listed a connection theorem between VST and assembly where Clight “drops

out” as the “ultimate goal” of future work.

3
https://github.com/AbsInt/CompCert/blob/v3.13.1/common/Smallstep.v#L1293-L1319

4
https://github.com/AbsInt/CompCert/blob/v3.13.1/driver/Complements.v#L159-L171

20

https://github.com/AbsInt/CompCert/blob/v3.13.1/common/Smallstep.v#L1293-L1319
https://github.com/AbsInt/CompCert/blob/v3.13.1/driver/Complements.v#L159-L171

1.2.1 Case Studies in Foundational End-to-End Systems Verification

The IoT lightbulb: an embedded system with an end-to-end proof spanning software and hard-

ware I co-developed, with Andres Erbsen, Joonwon Choi, and Clark Wood, a bare-metal embed-

ded system (chapter 8) with an end-to-end proof that spans both software and hardware. I co-

developed the Bedrock2 source language with Andres Erbsen, made sure my compiler and RISC-V

semantics are provably compatible with the layer above (i.e. the program logic) as well as with the

layer below (the processor), wrote down most of the intermediate specifications and coordinated

and negotiated assignment of the proof tasks required to fill all the unproven gaps.

The system is the first such system with unbounded reactive execution, as opposed to comput-

ing the result for one input and then terminating. I show that even if the source language semantics

require termination for all functions, the required infinite top-level loop can be implemented in as-

sembly (section 8.3.1) and combined with the compiler correctness proof in a way that leads to a

concise end-to-end theorem.

This case study is also the first foundationally verified end-to-end software-hardware system

featuring realistic I/O, memory-mapped I/O (MMIO) in our case, as opposed to storing its result

somewhere in regular memory and relying on an unverified outside process for reading it out. I

made sure MMIO can be represented at each layer of the stack at an appropriate level of abstraction

and that the different address ranges used for MMIO, instruction memory, stack, and heap remain

disjoint, even though in the source language semantics, the only existing memory is heap memory

(section 8.3.4).

I also solved the corner case that arises when a pipelined processor writes to an address contain-

ing an instruction that was already fetched and is about to be executed, by means of a specification

that only allows execution of addresses that were not written to previously (section 8.3.5).

The garage door opener: An embedded systemwith cryptographic authentication, with an end–

to-end theorem from high-level elliptic-curve math all the way down to machine code My

colleagues Andres Erbsen, Jade Philipoom, Dustin Jamner, Ashley Lin, Clément Pit-Claudel and I

developed an end-to-end verified cryptographic server that opens and closes a garage door in re-

sponse to cryptographically authenticated requests. I did an initial feasibility test to demonstrate

that my verified compiler (the Bedrock2 compiler) is able to compile, inside Coq, long functions

generated by Fiat Cryptography [Erbsen et al., 2019] that compute modular arithmetic operations, I

added features to the compiler (such as embedding data into the emitted code) that are required for

the application, and I wrote the compiler’s top-level always-eventually theorem whose structure is

21

mirrored by the garage door top-level theorem. All the code of the system, including code created

by two high-level compilers as well as handwritten code, is compiled by my verified compiler.

Verifying software emulation of an unsupported hardware instruction I implemented, with

advice from my colleague Thomas Bourgeat, a RISC-V trap handler for unsupported instruction

exceptions, to demonstrate how my compiler and RISC-V semantics enable reasoning about code

that many other verification projects would label as “unverified trusted glue code”. The trap han-

dler can be installed on RISC-V systems that do not support the multiplication instruction, and

it runs an instruction decoder and multiplier implemented in software whenever an exception is

thrown due to amultiplication instruction. The proof combines program-logic proofs about C-level

(Bedrock2) functions, the correctness proof of my compiler, and proofs about hand-written assem-

bly, to demonstrate that despite all the implementation complexity, a concise statement about the

system’s behavior can be proven: The systemwithmultiplication implemented in software behaves

as if multiplication were implemented in hardware.

1.2.2 Building Blocks

The Bedrock2 compiler: A verified compiler all the way down to machine code providing cor-

rectness proofs about individual functions I developed a verified compiler (chapter 3) from a

C-like language (Bedrock2) to RISC-V. Contrary to CompCert [Leroy, 2009a], which compiles to

a fairly high-level assembly language with infinite memory and builtin pseudo-instructions such

as allocating and freeing stack frames, my compiler goes all the way down to bytes that repre-

sent machine code. It uses a phase-composition mechanism (section 3.5) which, contrary to other,

state-of-the-art verified compilers such as CompCert or CakeML [Lööw et al., 2019], enables cor-

rectness theorems about individual compiled functions, rather than just about whole programs.

Note that there is also a whole line of work around extending CompCert to support various forms

of separate compilation, see e.g. [Jiang et al., 2019; Song et al., 2020] and papers cited there, but

they all express compiler correctness with respect to a notion of linking that takes place both at

the source and target level, resulting in theorems that still talk about execution of whole programs,

and it is unclear how one would compose these correctness theorems with correctness theorems

about source functions to obtain a recipe (expressed as preconditions on target machine state) on

how to call individual functions.

22

A formal specification of an industrial ISA usable in combined software-hardware proofs Based

on a specification of the RISC-V instruction set architecture (ISA) in Haskell, I developed a RISC-V

specification in Coq, called riscv-coq (chapter 4), that can be used both to prove a compiler against

it, as well as to prove a processor against it, in such a way that we can combine the two to obtain

a proof where the ISA specification in the middle cancels out. It is the first project where this was

done with an industrial ISA rather than a custom one.

Formally specifying an ISA without using a DSL A prominent approach to formally specifying

ISAs in today’s literature is Sail [Armstrong et al., 2019], a domain-specific language just for defin-

ing ISA semantics. One might wonder whether for each new domain in which we want to write

specifications, a new DSL will be needed, with its own set of tools and maintenance burden. With

riscv-coq I showed, together with the other use cases described by Bourgeat et al. [2023], that an

ISA can also be specified using only existing languages and tools.

1.2.3 Techniques

Omnisemantics: Combining undefined behavior and nondeterminism in interactive theorem

proving I co-developed, with my colleague Andres Erbsen, a new style of programming lan-

guage semantics that we call omnisemantics and that is significantly easier to use than traditional

small-step or big-step operational semantics when the language has both undefined behavior and

nondeterminism (chapter 2). The key insight is to define inductive rules in such a way that one

derivation talks about all possible nondeterministic executions (hence the name omni). Andres

and I only worked with imperative languages, and while writing a paper about omnisemantics,

we learned that Arthur Charguéraud was working with the same kind of semantics, but for func-

tional languages, so we joined forces, and he contributed the parts about functional languages. I

also discovered that a folklore trick to prove type safety in one single proof instead of two proofs

(progress and preservation), which only works for deterministic languages when using traditional

operational semantics, now also works for nondeterministic languages thanks to omnisemantics.

Schäfer et al. [2016] already used a similar style of semantics they called axiomatic semantics,

but did not recognize that their approach would enable compiler phases with nondeterministic

target languages, nor the application to type safety.

Forward-simulation compiler correctness proofs with nondeterministic target languages I de-

veloped the first compiler that uses omnisemantics with nondeterministic target languages and

23

showed that contrary to CompCert’s forward simulations, which only work for deterministic lan-

guages, omnisemantics forward simulations also work for nondeterministic languages, which is

a considerable advantage because forward simulations are much easier to prove than backward

simulations.

Live Verification in an interactive proof assistant In chapter 5, I show that an interactive proof

assistant with an extensible parser and a proof goal display (such as e.g. Coq) can be turned into

a live verification tool, that is, a tool that enables programmers to verify their code as they write

it in real-time. After each line of code that the programmer writes, the tool tells the programmer

whether it was able to prove absence of undefined behavior so far, and it displays a concise repre-

sentation of the symbolic state of the program right after the added line. The user can then either

write the next line of code, or if needed or desired, write a specially marked comment that pro-

vides hints on how to solve side conditions or on how to represent the symbolic state more nicely.

Once the programmer has finished writing the program, it is already verified with a mathematical

correctness proof.

Expressing a loop invariant as a diff from the symbolic state before the loop Software verifica-

tion requires loop invariants, and different tools approach them in different ways: Some attempt

to infer loop invariants automatically, which can take a long time and does not always work; while

others require the user to state loop invariants manually, which can represent a high annotation

burden and require manual adaptation on unrelated source code changes. Based on the observa-

tion that a loop invariant often looks quite similar to the symbolic state before the loop, I propose

a middle ground between these two extremes: My Live Verification tool still requires the user to

come upwith the necessary insight of the loop invariant, but enables the user to express this insight

as a diff from the current symbolic state rather than having to spell out the whole loop invariant

manually.

Concepts to reduce the need for backtracking lead to better proof debuggability Proof automa-

tion should be designed to optimize the user experience for failing proofs rather than for proofs

where everything works, because the former is the default case in a proof developer’s day-to-day

work. Tomake it easier to debug failing proofs, it helps if the framework’s automation is structured

into many small proof steps that the user can run separately in sequence, and with this structure,

it particularly helps to reduce the need for backtracking in proof search. Previous work as well

as mine use a notion of safe steps, that is, proof steps that do not turn a provable goal into an un-

24

provable goal. In addition to some well-known safe steps, I present a number of separation-logic

concepts that inform proof automation what the only reasonable next proof step can be, which

leads to further reduction of the need for backtracking and thus easier debuggability.

Automated splitting and merging of separation logic clauses A common pattern in separa-

tion logic proofs is that a caller has a big separation logic clause (e.g. an array or a record) and

needs to pass a subpart of it (e.g. one array element or a slice of the array or a record field) to an

operation such as a memory load or store or a function call. Through specialized lemmas, VST

[Cao et al., 2018] provides automation for this pattern in the case of memory loads and stores,

but not for function calls. I show that if the right automation is chosen for this pattern, the same

automation can be used for memory loads, stores as well as for function calls, and that for a big

class of such call patterns, all the information needed to determine the required splits and merges

is already contained in the source program and can therefore be completely automated without

requiring backtracking (section 5.4.9).

Simplification of expressions describing symbolic state I developed a term simplification pro-

cedure that helps present the symbolic state in a more concise way, combining rewrite rules (e.g.

lemmas about arithmetic or lists) and type-specific simplification procedures (e.g. ring simplifi-

cation or operator-specific operator-push-down procedures), and I provide informal analytical as

well as preliminary empirical evidence that one single bottom-up expression traversal is usually

sufficient.

Additional techniques to make Live Verification in an interactive proof assistant practical To

make Live Verification practical, I developed additional techniques, including a mechanism to ex-

tract pure facts from separation logic clauses and a ℤification process that turns expressions over

fixed-width integers into expressions over unbounded integers ℤ in such a way that the work is

reusable among several side condition proofs.

1.3 Structure of the Dissertation

Part I describes techniques and building blocks: Omnisemantics (chapter 2), the Bedrock2 verified

compiler (chapter 3), the riscv-coq formal ISA specification (chapter 4), Live Verification (chapter 5),

and a term simplification procedure (chapter 6).

25

Part II then presents an overview (chapter 7) of three case studies that show that the techniques

can be used to create end-to-end verified systems with a small trusted codebase (TCB) and thus low

auditing burden, followed by a chapter for each case study: The IoT lightbulb (chapter 8) combines

software and hardware proofs in such a way that the ISA specification is not part of the TCB

anymore, the garage door opener (chapter 9) provides a theorem about a cryptographic server that

goes all the way from high-level elliptic-curve math to RISC-V machine code, and the softmul case

study (chapter 10) shows how my techniques can be used to reason about a RISC-V trap handler.

In chapter 11, I try to measure, using lines-of-code counts, whether the claim that founda-

tional end-to-end proofs reduce the auditing burden can be backed up with numbers, and Part III,

chapter 12 concludes.

26

Part I

Techniques and Building Blocks

27

Chapter 2

Omnisemantics1

This chapter presents omnisemantics, a style of semantics that I co-developed with Andres Erbsen

and Arthur Charguéraud. Undefined behavior and nondeterminism are, as explained in section 2.1,

two useful features for modeling programming language semantics. For example, to specify the

low-level memory access behavior of C, undefined behavior is crucial, and to specify the semantics

of stack allocation, a feature widely used in the case study in chapter 9, nondeterminism is needed

to leave the concrete value of the returned address underspecified. However, when using tradi-

tional big-step or small-step operational semantics (surveyed in section 2.2) to combine undefined

behavior and nondeterminism, some problems arise, as explained in section 2.3, and CompCert’s

solution to one of the problems (section 2.3.2.5) is not satisfactory. In section 2.4, omnisemantics are

introduced and shown to solve these problems, and section 2.5 shows that omnisemantics not only

work in big-step style, but also in small-step style. Then, section 2.6 presents seven different ways

one could discover omnisemantics, providing additional evidence that it makes sense to consider

this judgment, and section 2.7 discusses related work.

2.1 Undefined Behavior and Nondeterminism

Let us have a look at two features that are useful to specify the semantics of a programming lan-

guage: Undefined behavior and nondeterminism.

Undefined behavior is useful to deal with programs whose execution goes wrong, by which we

mean, for example, that execution encounters a function application (𝑓 𝑎) where 𝑓 is not a lambda

(but some other value, e.g. an integer), or that execution encounters an out-of-bounds write to an

1
This chapter of the dissertation contains text copied and adapted from the TOPLAS’23 paper I co-authored with

Arthur Charguéraud, Adam Chlipala, and Andres Erbsen [Charguéraud et al., 2023].

29

array. Specifying precise guarantees of what happens in such cases can be undesirable, because

it puts too much burden on language implementations: For instance, in order to guarantee that

out-of-bounds writes have some well-defined behavior (such as e.g. throwing an exception like

Java does or implicitly growing the array like JavaScript does) requires bounds checks on each

access and also requires additional metadata (such as the array length) to be stored at runtime – an

overhead that low-level, performance-minded languages like C want to avoid. Instead, we want to

leave the semantics of such erroneous programs undefined, and allow language implementations

to exhibit arbitrary behavior on programs with undefined behavior, including, e.g., to overwrite

other data or execute arbitrary code. Of course, this is dangerous from a correctness and security

point of view, and therefore, undefined behavior tends to have a bad reputation in programming

languages circles, but, as we will see in the later chapters, we can use formal methods to prove

absence of undefined behavior. So, to define programming language semantics, we use rules like

e.g. “if the array index is in bounds, execution does ...” and simply say nothing about all other

cases, i.e. leave them undefined. The alternative would be to say explicitly that the semantics of

this program is “error”, but this would require additional rules to propagate errors. For instance, if

we use undefined behavior, the construct let 𝑥 = 𝑒1 in 𝑒2 can be defined with just one rule: “If

𝑒1 evaluates to some value 𝑣1 and 𝑒2 with 𝑣1 substituted for 𝑥 evaluates to some value 𝑣2, then the

overall let expression evaluates to 𝑣2.” On the other hand, if we wanted to avoid undefined behavior

in our definitions, we would have to add two extra rules for the error cases: One saying that if 𝑒1

leads to “error”, then the overall let expression also leads to “error”, and a similar one for 𝑒2. So, to

summarize, undefined behavior is useful because it gives flexibility to language implementers and

allows concise definitions of language semantics.

Nondeterminism is useful to leave certain details in a language definition underspecified. Note

the subtle difference between undefined, meaning that any behavior is allowed, as described above,

and underspecified, meaning that any behavior from a well-defined set of alternatives is allowed. An

example for underspecification would be the specification of a pseudo random number generator:

It can return any integer, but invoking the pseudo random number generator cannot arbitrarily

overwrite unrelated data, like performing an out-of-bounds write could. Other examples of using

nondeterminism for underspecification include the address returned by memory allocation, which

could be any address different from previously allocated memory, or taking the address of a local

variable, or reading input.

One way to avoid this kind of nondeterminism is to model it using oracles, that is, opaque

deterministic functions whose implementations are left unspecified. However, to make sure such

an oracle function can return a different value each time, it needs to take some opaque state as an

30

𝑐1/𝑠 ⇓ 𝑠′ 𝑐2/𝑠′ ⇓ 𝑠′′

(𝑐1; 𝑐2)/𝑠 ⇓ 𝑠′′

𝑦 ∈ dom 𝑠 𝑧 ∈ dom 𝑠

(𝑥 = 𝑦 + 𝑧)/𝑠 ⇓ 𝑠 [𝑥 := 𝑠 [𝑦] + 𝑠 [𝑧]]

𝑠 [𝑏] ≠ 0 (𝑐; while(𝑏){𝑐})/𝑠 ⇓ 𝑠′

(while(𝑏){𝑐})/𝑠 ⇓ 𝑠′

𝑠 [𝑏] = 0

(while(𝑏){𝑐})/𝑠 ⇓ 𝑠

0 ≤ 𝑣 < 𝑛

(𝑥 = rand(𝑛))/𝑠 ⇓ 𝑠 [𝑥 := 𝑣]

Whole-program execution: 𝑐/𝑠 ⇓ 𝑠′

(a) Big-step

𝑐1/𝑠 → 𝑐′
1
/𝑠′

(𝑐1; 𝑐2)/𝑠 → (𝑐′1; 𝑐2)/𝑠′ (skip; 𝑐2)/𝑠 → 𝑐2/𝑠

𝑦 ∈ dom 𝑠 𝑧 ∈ dom 𝑠

(𝑥 = 𝑦 + 𝑧)/𝑠 → skip/𝑠 [𝑥 := 𝑠 [𝑦] + 𝑠 [𝑧]]

𝑠 [𝑏] ≠ 0

(while(𝑏){𝑐})/𝑠 → (𝑐; while(𝑏){𝑐})/𝑠

𝑠 [𝑏] = 0

(while(𝑏){𝑐})/𝑠 → skip/𝑠

0 ≤ 𝑣 < 𝑛

(𝑥 = rand(𝑛))/𝑠 → skip/𝑠 [𝑥 := 𝑣]

Whole-program execution: 𝑐/𝑠 →∗ skip/𝑠′

(b) Small-step

Figure 2.1: Selected rules in traditional big-step and small-step operational semantics for a simple

imperative language

argument, and return an updated state with each result. Modeling what state an oracle depends on

accurately can be tricky: For instance, a pseudo random number generator might collect entropy

from various sources that might be affected by I/O or by the state of other external functions mod-

eled as oracles. And another drawback of oracles is that threading the state of each oracle through

the definition of the semantics of a programming language can become undesirably verbose, espe-

cially if there are several oracles.

2.2 Background and Baseline: Big-Step and Small-Step Opera-

tional Semantics

Traditionally in the programming languages field, the semantics of programming languages are

usually defined using big-step or small-step operational semantics. A few sample rules for a simple

imperative language are given in Figure 2.1.

31

The big-step operational semantics judgment has the form 𝑐/𝑠 ⇓ 𝑠′, where 𝑐/𝑠 is the initial

configuration, consisting of a command 𝑐 and an initial state 𝑠 , and 𝑠′ is the final state reached after

executing 𝑐 . In this simple language, states 𝑠 are partial maps from variable names to integers.

While the big-step judgment completely evaluates its command, the small-step judgment, writ-

ten 𝑐/𝑠 → 𝑐′/𝑠′, only performs one small step at a time, from an initial configuration 𝑐/𝑠 to a next
configuration 𝑐′/𝑠′ with an updated command and state. To talk about the execution of a whole

program, we therefore need to take the reflexive-transitive closure of the step relation, written

𝑐/𝑠 →∗ skip/𝑠′, where skip is used to denote the empty program.

Small-step operational semantics aremore suitable to reason about infinitely-running programs

and about interleaved execution of several programs, but they tend to be a bit less convenient than

big-step semantics for proofs by induction over the structure of a derivation.

2.2.1 Expressing Undefined Behavior and Nondeterminism

Let us see how undefined behavior and nondeterminism are expressed in traditional big-step and

small-step operational semantics:

• Undefined behavior is expressed by absence of applicable rules: For instance, in the rules for

the addition command 𝑥 = 𝑦 + 𝑧, if the premises requiring that 𝑦 and 𝑧 are in the domain of

the variable map 𝑠 are not satisfied, there is no other applicable rule (and the configuration

𝑐/𝑠 is called “stuck”).

• Nondeterminism is expressed using implicit top-level universal quantification: All variables

appearing in inference rules are presumed to be universally quantified, so in the rule for

the pseudo random number generator, the user of the rule can pick any 𝑣 that satisfies the

premise 0 ≤ 𝑣 < 𝑛.

Alternatively, we can also represent them graphically in state transition diagrams, as depicted

in Figure 2.2.

2.3 Problems ArisingWhen Combining Undefined Behavior and

Nondeterminism

When using both undefined behavior and nondeterminism at the same time, a few problems (or,

at least, inconveniences) arise that are explained in the following subsections.

32

...
non-final state
without any
outgoing transitions

(a) States with undefined behavior (stuck states)

are non-final states without any outgoing transi-

tions.

...
...

...

...
one state can step to several
possible next states:

(b) Nondeterminism is represented asmultiple out-

going transitions from the same state.

Figure 2.2: Representing undefined behavior and nondeterminism in state transition diagrams

2.3.1 Problem 1: Expressing That Every Execution Safely Terminates in a State

Satisfying Some Postcondition

In program and compiler verification, the statements we want to prove are often of the form

Program 𝑐 , when run in initial state 𝑠 , safely terminates,

and all final states satisfy postcondition 𝑃 .
(∗)

By “postcondition”, we mean a predicate over states, and by “safely terminate”, we mean that

the program does not reach any non-final state where it is stuck, i.e., no state for which the behavior

is undefined, and that it does not loop infinitely.

Expressing (∗) in a deterministic language is straightforward: ∃𝑠′, 𝑐/𝑠 ⇓ 𝑠′ ∧ 𝑃 𝑠′ in big-step,

or ∃𝑠′, 𝑐/𝑠 →∗ skip/𝑠′ ∧ 𝑃 𝑠′ in small-step. However, as illustrated in Figure 2.3, as soon as we

add nondeterminism to a language, proving that one path to a state satisfying the postcondition

exists is not sufficient anymore, because there could be another path to a stuck state. Also, simply

proving ∀𝑠′, 𝑐/𝑠 ⇓ 𝑠′ ⇒ 𝑃 𝑠′ (in big-step) or ∀𝑠′, 𝑐/𝑠 →∗ skip/𝑠′ ⇒ 𝑃 𝑠′ (in small-step) is not

sufficient either, because these hypotheses include only final states, so we can still miss paths to

stuck states.

2.3.1.1 Unsatisfactory Existing Solutions to Problem 1

There are various fixes to support nondeterminism, but all of them are quite cumbersome:

33

P
holds

stuck!

s

(no outgoing
arrows here)

Figure 2.3: Proving that one path to a state satisfying the postcondition exists is not sufficient if

there is nondeterminism, nor is proving that all final states satisfy the postcondition

Long formula One way is to say that for all reachable states 𝑠′ which do not step any further, the

desired postcondition holds:

∀𝑠′, (𝑠 →∗ 𝑠′ ∧ �𝑠′′, 𝑠′ → 𝑠′′) ⇒ 𝑃 𝑠′

However, it is ill-suited for proofs by induction over execution steps.

Separate safety judgment Another fix would be to define a separate safety judgment safe(𝑐/𝑠)
to assert that executing 𝑐 from state 𝑠 does not get stuck and terminates. For each construct of the

language, we would then have to add a corresponding safety rule. For example, the safety rules for

sequence and addition would look as follows:

safe(𝑐1/𝑠) ∀𝑠′, 𝑐1/𝑠 ⇓ 𝑠′ ⇒ safe(𝑐2/𝑠′)

safe((𝑐1; 𝑐2)/𝑠)

𝑦 ∈ dom 𝑠 𝑧 ∈ dom 𝑠

safe((𝑥 = 𝑦 + 𝑧)/𝑠)

Note how the rule for sequencing needs to universally quantify over all possible 𝑠′ within its

premise. Having to duplicate the number of rules and carrying around a safety judgment every-

where might work, but is undesirable.

Adding Explicit Errors Yet another fix would be to introduce an explicit “error” state err to make

the evaluation judgment total, in the sense that for all 𝑐/𝑠 , there exists at least one 𝑠′ such that

𝑐/𝑠 ⇓ 𝑠′. However, this approach would increase the number of rules by a factor even greater than

2: On one hand, for each leaf rule (i.e. rule without recursive invocations of the judgment in its

premises), we would have to add rules to specify how this statement could lead to an error. For

34

instance, the addition command would require two extra rules:

𝑦 ∉ dom 𝑠

(𝑥 = 𝑦 + 𝑧)/𝑠 ⇓ err

𝑧 ∉ dom 𝑠

(𝑥 = 𝑦 + 𝑧)/𝑠 ⇓ err

And on the other hand, for each rule with recursive invocations of the judgment in its premises, we

would have to add one extra rule per recursive invocation, to propagate the potential error of each

recursive rule. For instance, these two extra rules would be needed for the sequence command:

𝑐1/𝑠 ⇓ err

(𝑐1; 𝑐2)/𝑠 ⇓ err

𝑐1/𝑠 ⇓ 𝑠′ 𝑐2/𝑠′ ⇓ err

(𝑐1; 𝑐2)/𝑠 ⇓ err

2.3.2 Problem 2: How to Use Forward Simulations in the Presence of Nonde-

terminism

2.3.2.1 Expressing Compiler Correctness as a Backward Simulation

Traditionally, compiler correctness is expressed as a backward2 simulation: For each possible be-

havior of the target program created by the compiler, there exists a corresponding behavior of the

source program that justifies the target program behavior, which could be expressed as follows:

∀𝑠′, C(𝑐)/𝑠 ⇓ 𝑠′ ⇒ 𝑐/𝑠 ⇓ 𝑠′

This statement only talks about terminating behaviors. If we use semantics that also allow talking

about failing and diverging behaviors, we should add two similar implications saying that all fail-

ing and diverging behaviors of the target program are also justified by corresponding failing and

diverging behaviors of the source program (this is, roughly, what CompCert does). In this thesis,

however, we restrict ourselves to programs that are proven safe, that is, do not have undefined

behavior and terminate. This choice is not really a restriction in our setting, because we prove

functional correctness for all our source programs (which implies that they are safe), and for the

very few deliberately infinitely-running programs, we use a separate mini-compiler as described

in section 8.3.1.

So, we allow a compiler C to assume that the source program is safe, and require, as part of

compiler correctness proofs, a proof that the emitted target program is safe, which leads to the

2
We follow CompCert’s terminology, where “backward” means “from target language to source language”, i.e.

backward with respect to the direction of compilation, even though in earlier work, “backward” means “backward in

time” [Lynch and Vaandrager, 1996].

35

following definition:

Definition 2.1 (Backward-simulation-based compiler correctness).

compile-correct-bw-sim(C) := ∀𝑐 𝑠, safe(𝑐/𝑠) ⇒ (safe(C(𝑐)/𝑠) ∧ (∀𝑠′, C(𝑐)/𝑠 ⇓ 𝑠′ ⇒ 𝑐/𝑠 ⇓ 𝑠′))

This formulation still contains the simplification that the source and target state representation

are assumed to be the same, which is not the case for many interesting compiler phases. Therefore,

for full generality, we should use source language states 𝑠1 and 𝑠
′
1
, target language states 𝑠2 and 𝑠

′
2
,

as well as a relation 𝑅 between source and target states, which leads to the following definition:

Definition 2.2 (Backward-simulation-based compiler correctness, generalized).

compile-correct-bw-sim-generalized(C) :=

∀𝑐 𝑠1, safe(𝑐/𝑠1) ⇒
(
∀𝑠2, 𝑅 𝑠1 𝑠2 ⇒ safe(C(𝑐)/𝑠2) ∧

(∀𝑠′
2
, C(𝑐)/𝑠2 ⇓ 𝑠′2 ⇒ ∃𝑠′1, 𝑅 𝑠′

1
𝑠′
2
∧ 𝑐/𝑠1 ⇓ 𝑠′1)

)
The structure and intuition behind this formula is still the same: If the source program is safe,

the compiled program is safe as well, and each possible execution of the compiled program can be

justified by a corresponding execution of the source program. However, as we can see, the formula

is now quite verbose, so for the remainder of this chapter, we will use the simplified version where

source and target language use the same state representation, but all the results also generalize to

the case with different state representations with a relation 𝑅 between them.

2.3.2.2 Forward Simulations

Forward simulations state that all source program executions have a corresponding target program

execution:

Definition 2.3 (Forward-simulation-based compiler correctness).

compile-correct-fw-sim(C) := ∀𝑐 𝑠 𝑠′, 𝑐/𝑠 ⇓ 𝑠′ ⇒ C(𝑐)/𝑠 ⇓ 𝑠′

For deterministic target languages, forward simulations can be turned into backward simulations:

Theorem 2.4. If the target language is deterministic, then

compile-correct-fw-sim(C) ⇒ compile-correct-bw-sim(C)

36

Proof. compile-correct-bw-sim(C) allows us to assume safe(𝑐/𝑠), which implies that there ex-

ists an 𝑠′ such that 𝑐/𝑠 ⇓ 𝑠′, and using the implication from the forward simulation, we obtain

C(𝑐)/𝑠 ⇓ 𝑠′. We need to show safe(C(𝑐)/𝑠), which holds because we have one execution starting

at C(𝑐)/𝑠 , and since the target language is deterministic, this one is the only possible execution,

so all executions are safe, and we also need to show ∀𝑠′′, C(𝑐)/𝑠 ⇓ 𝑠′′ ⇒ 𝑐/𝑠 ⇓ 𝑠′′, which holds

because target language determinism allows us to conclude that 𝑠′′ is the same as the 𝑠′ we already

have, so we only need to show 𝑐/𝑠 ⇓ 𝑠′, which we already did. □

Note that, contrary to the backward simulation, we do not need to add any safe assumption or

conclusion, because for deterministic languages, safe is subsumed by ⇓.
A related variant of this forward-to-backward theorem (that also supports failing and diverging

programs) is used by CompCert.

2.3.2.3 Forward Simulations are More Convenient

The appeal of forward simulations is that they are easier to prove, because they allow writing

a proof by induction over the source language execution, which involves a case analysis over all

possible source language constructs, and given one source language construct, we can symbolically

evaluate the compilation function on it to obtain a target language snippet, which we then can

symbolically evaluate according to the target language semantics. Backward simulations, on the

other hand, tend to be harder to prove, because typically, each target language construct could be

the compilation result of several different source language constructs.

The claim that forward simulations are easier to prove is also supported by the fact that all

CompCert phases are proven correct using forward simulations, except the first one, which does

not actually change the program, but changes the semantics from nondeterministic expression

evaluation order to one specific, deterministic expression evaluation order.

Note that this claim applies only to compiler correctness theorems that universally quantify

over all possible programs. In a translation validation setting, where we reason about only one

concrete source language program and its corresponding concrete target language program at a

time, the difficulties do not appear.

2.3.2.4 Forward Simulations do not Work With Nondeterminism

But unfortunately, if the target language has both nondeterminism and undefined behavior (which

both are highly useful features to define programming language semantics, as we saw in sec-

tion 2.1), forward simulations are meaningless: They merely say that for each source language

37

behavior, a corresponding target language behavior exists, but they do not show that there are

no other (nondeterministic) target language executions that could lead to undefined behavior, as

illustrated with !? in Figure 2.4b.

2.3.2.5 CompCert’s (Non-)Solution to Enable Use of Forward Simulations

CompCert’s main correctness theorem is stated as a backward simulation, but the correctness

proofs of almost all phases are stated as forward simulations, and (a variant of) Theorem 2.4 is

used to turn them into backward simulations. However, this trick requires making the target lan-

guage and intermediate languages deterministic, which comes at a considerable cost. Arguably,

the most natural way to model memory allocation would be to use nondeterminism to state that

the returned pointer could be any address (as long as it is disjoint from previously allocated mem-

ory). Now, to remove this nondeterminism, CompCert’s memory model [Leroy et al., 2012] models

pointers not just as 32-bit or 64-bit integers, but as a tuple of a block ID and an offset, both of

which are unbounded integers, and the semantics state that if the most recent allocation returned

block ID 𝑛, the next allocation will deterministically return block ID 𝑛 + 1.
However, this design means that whenever a compilation phase introduces or removes allo-

cations, the addresses in the target memory will differ from their corresponding addresses in the

source memory, so to relate source states to target states, one has to use a so-called memory injec-

tion, which is difficult.
3

2.3.3 Problem 3: How to Prove Progress & Preservation in One Linear-Size

Proof

The traditional approach of proving type safety [Wright and Felleisen, 1994] for a typed program-

ming language involves writing two proofs, progress and preservation:
4

progress: ⊢ 𝑡 : 𝑇 ⇒ ∃𝑣, 𝑡 ⇓ 𝑣
preservation: (Γ ⊢ 𝑡 : 𝑇 ∧ 𝑡 ⇓ 𝑣) ⇒ Γ ⊢ 𝑣 : 𝑇

A problem with this approach is that both proofs have a fairly similar structure that requires case

analysis over all typing rules, and each change to the language requires updating both proofs (un-

less they are highly automated, but in that case, failures of the automation are harder to pinpoint).

3
Personal communication with several researchers who worked with CompCert

4
For simplicity, we consider a functional language here, but the discussion also applies to imperative languages

with a store 𝑠 . Moreover, we only discuss the case for big-step semantics, but the same considerations also apply for

small-step semantics.

38

source: target:

s

s’

...

s

s’

...
⇒

Meaningful: ✓ Convenient: ✓

(a) Traditional forward simulation for determinis-

tic languages

source: target:

s

s’

...

s

s’

...
⇒

...

...

!?

!?

Meaningful: ✗ Convenient: ✓

(b) Traditional forward simulation for nondeter-

ministic languages

source: target:

s

s’

...

s

s’

...
⇐

...

...

...

...

Meaningful: ✓ Convenient: ✗

(c) Traditional backward simulation for nondeter-

ministic languages

source: target:

s

...

...

...

s

...

...

...⇒

Meaningful: ✓ Convenient: ✓

(d) Omnisemantics forward simulation for nonde-

terministic languages

Figure 2.4: Different simulations and their assessment: Whether they are meaningful, i.e. prove

something useful, and whether they are convenient to prove.

39

𝑐1/𝑠 ⇓ 𝑄 ∀𝑠′, 𝑄 𝑠′ ⇒ 𝑐2/𝑠′ ⇓ 𝑃
(𝑐1; 𝑐2)/𝑠 ⇓ 𝑃

𝑦 ∈ dom 𝑠 𝑧 ∈ dom 𝑠 𝑃 𝑠 [𝑥 := 𝑠 [𝑦] + 𝑠 [𝑧]]
(𝑥 = 𝑦 + 𝑧)/𝑠 ⇓ 𝑃

𝑠 [𝑏] ≠ 0 𝑐/𝑠 ⇓ 𝑄
∀𝑠′, 𝑄 𝑠′ ⇒ (while(𝑏){𝑐})/𝑠′ ⇓ 𝑃

(while(𝑏){𝑐})/𝑠 ⇓ 𝑃
𝑠 [𝑏] = 0 𝑃 𝑠

(while(𝑏){𝑐})/𝑠 ⇓ 𝑃

0 < 𝑛 ∀𝑣, 0 ≤ 𝑣 < 𝑛 ⇒ 𝑃 𝑠 [𝑥 := 𝑣]
(𝑥 = rand(𝑛))/𝑠 ⇓ 𝑃

Figure 2.5: Selected big-step omnisemantics rules

Progress is usually proven by induction over the typing derivation, whereas preservation,

which has both a typing derivation and an evaluation derivation as hypotheses, can go by induc-

tion over either of them. No matter which one is chosen in the preservation proof, in an interactive

proof assistant, the first step of each case is then to do a case analysis on the other derivation to

conclude that only a few cases are possible, namely those talking about the same language con-

struct as the other hypothesis. Coq’s inversion tactic automatically gets rid of the contradictory

cases, but the proof term that it generates (and the kernel needs to check) still contains one case

for each combination of a typing rule and an evaluation rule, which leads to a proof term whose

size is quadratic in the size of the language definition, and for big languages, this blowup can be a

problem.

Similarly to the two previous problems of section 2.3.1 and section 2.3.2, there exists a simple

solution that unfortunately only works for deterministic languages: Instead of proving progress

and preservation separately, we just prove the following combined type-safety statement:

⊢ 𝑡 : 𝑇 ⇒ ∃𝑣, 𝑡 ⇓ 𝑣 ∧ ⊢ 𝑣 : 𝑇

For deterministic languages, the existential quantification is unique, so it can be turned into the

universal quantification required for preservation, but this trick stops working as soon as we in-

troduce nondeterminism.

40

2.4 The Big-Step Omnisemantics Judgment

It turns out that all the problems described in section 2.3 vanish if we change the judgment so that

one derivation talks about all (omni, hence the name omnisemantics) possible nondeterministic

behaviors instead of just one. Concretely, we define a judgment of the form 𝑐/𝑠 ⇓ 𝑃 , where 𝑃 is

a postcondition over states, whose meaning is that program 𝑐 , when run in initial state 𝑠 , safely

terminates, and all possible final states satisfy 𝑃 .

Sample rules are given in Figure 2.5. Note how, contrary to the traditional rules in Figure 2.1a,

the rule for rand talks about all possible returned values of the rand function within one rule appli-

cation. Deterministic rules such as the rule for addition just assert that the postcondition holds on

the updated state, whereas the rule for sequencing requires the prover to pick a “mid-condition”𝑄

that holds after executing 𝑐1, and to show that 𝑐2 safely runs to a state satisfying 𝑃 for all states in

that chosen 𝑄 . The first rule for while loops uses this same sequencing pattern to chain the first

loop iteration with subsequent iterations, and the second rule for while loops just asserts that the

postcondition needs to hold on the initial state in case the loop condition is false.

2.4.1 Relationship to Traditional Semantics

The big-step omnisemantics judgment is related to traditional big-step operational semantics in

the following sense:

Theorem 2.5 (Equivalence of big-step omnisemantics and traditional semantics).

𝑐/𝑠 ⇓ 𝑃 ⇐⇒ safe(𝑐/𝑠) ∧ ∀𝑠′, 𝑐/𝑠 ⇓ 𝑠′ ⇒ 𝑃 𝑠′

The proof is by induction on the derivations and is unsurprising.
5

Moreover, the omnisemantics judgment has the exact samemeaning as theweakest-precondition

judgment, so if one defined an omnisemantics judgment for a language, one can use it to define

wp(𝑐, 𝑃) (𝑠) := 𝑐/𝑠 ⇓ 𝑃 .
However, there is still an important difference between the traditional way of defining aweakest-

precondition judgment and omnisemantics: The weakest-precondition rule for loops requires pro-

viding a loop invariant, and one rule application covers the execution of the whole loop, whereas

in the omnisemantics judgment, no loop invariant needs to be given, and the loop is unfolded it-

eration by iteration like in traditional big-step operational semantics, so proof trees contain one

5
A Coq proof by Arthur Charguéraud is available in the artifact of our omnisemantics paper [Charguéraud et al.,

2023] at https://samuelgruetter.net/assets/omnisemantics-artifact.zip in the file lambda/Omnisemantics.v.

41

https://samuelgruetter.net/assets/omnisemantics-artifact.zip

rule application per loop iteration, instead of one rule application per loop construct. In other

words, the structure of the proof tree of a weakest-precondition derivation mirrors the structure

of the command, whereas the structure of the proof tree of an omnisemantics derivation mirrors

the structure of the execution.

2.4.2 Solving Problem 1: It Works By Definition

To solve problem 1, it suffices to observe that our definition of 𝑐/𝑠 ⇓ 𝑃 exactly matches the desired

meaning given in (∗) in section 2.3.1.

2.4.3 Solving Problem 2: Omnisemantics Forward Simulations Just Work

Using omnisemantics, we can make the following definition:
6

Definition 2.6 (Omnisemantics forward simulation for compiler correctness).

compile-correct-omni-fw-sim(C) := ∀𝑐 𝑠 𝑃, 𝑐/𝑠 ⇓ 𝑃 ⇒ C(𝑐)/𝑠 ⇓ 𝑃

Compared to compile-correct-fw-sim from Theorem 2.3, the conclusion about target lan-

guage execution is now much stronger, because it talks about all possible behaviors, so the risk of

missing some bad executions is gone, as illustrated in Figure 2.4d.

2.4.3.1 Omnisemantics Forward Simulation Implies Traditional Backward Simulation

The intuition that omnisemantics forward simulations mean what they should mean can also be

made formal by proving that they imply traditional backward simulations:

Theorem 2.7. For all compilation functions C,

compile-correct-omni-fw-sim(C) ⇒ compile-correct-bw-sim(C)

Proof. Let us show a chain of implications, starting by unfolding compile-correct-omni-fw-sim(C):

∀𝑐 𝑠 𝑃, 𝑐/𝑠 ⇓ 𝑃 ⇒ C(𝑐)/𝑠 ⇓ 𝑃
6
Note that, like in section 2.3.2, all definitions and proofs also extend to the case where the source- and target-

language state representations differ, and are related by a relation 𝑅, but to make the presentation more readable, we

stick to the simple case.

42

By applying Theorem 2.5 on both sides of the implication, we get

∀𝑐 𝑠 𝑃, (safe(𝑐/𝑠) ∧ ∀𝑠′, 𝑐/𝑠 ⇓ 𝑠′ ⇒ 𝑃 𝑠′) ⇒ (safe(C(𝑐)/𝑠) ∧ ∀𝑠′, C(𝑐)/𝑠 ⇓ 𝑠′ ⇒ 𝑃 𝑠′)

and by instantiating 𝑃 with the strongest postcondition of 𝑐/𝑠 , i.e. with (𝜆𝑠′. 𝑐/𝑠 ⇓ 𝑠′), we get

∀𝑐 𝑠, (safe(𝑐/𝑠) ∧ ∀𝑠′, 𝑐/𝑠 ⇓ 𝑠′ ⇒ 𝑐/𝑠 ⇓ 𝑠′) ⇒ (safe(C(𝑐)/𝑠) ∧ ∀𝑠′, C(𝑐)/𝑠 ⇓ 𝑠′ ⇒ 𝑐/𝑠 ⇓ 𝑠′)

and by removing a trivial implication, we get

∀𝑐 𝑠, safe(𝑐/𝑠) ⇒ (safe(C(𝑐)/𝑠) ∧ ∀𝑠′, C(𝑐)/𝑠 ⇓ 𝑠′ ⇒ 𝑐/𝑠 ⇓ 𝑠′)

which is exactly the definition of compile-correct-bw-sim(C). □

2.4.4 Solving Problem 3: Progress and Preservation in One Go

Using omnisemantics, the trick described in section 2.3.3 also works for nondeterministic lan-

guages, that is, to prove type safety, one proves

Γ ⊢ 𝑡 : 𝑇 ⇒ 𝑡 ⇓ (𝜆𝑣 . Γ ⊢ 𝑣 : 𝑇)

in one induction over the typing derivation. The interesting cases are rules for nondeterministic

constructs like rand: Their evaluation rules have premises with universal quantifiers, so while

proving type safety for these cases, we introduce the universally quantified variables inside the

cases, whereas in the traditional approach, the universal quantification over all possible executions

is on the very outside (top level), in the statement of preservation.

2.4.5 Overapproximation of the Set of Results

Note that the postconditions 𝑃 appearing in 𝑐/𝑠 ⇓ 𝑃 are overapproximations of the set of possi-

ble outcomes. One might wonder why we do not use precise outcome sets that contain only the

outcomes that can actually occur. For instance, the rule for sequencing would look as follows:

𝑐1/𝑠 ⇓ 𝑄 ∀𝑠′, 𝑄 𝑠′ ⇒ 𝑐2/𝑠′ ⇓ 𝑃𝑠′

(𝑐1; 𝑐2) ⇓
⋃
𝑠′∈𝑄

𝑃𝑠′

To get the precise outcome set, we rely on a family of outcomes 𝑃𝑠′ indexed by possible states 𝑠′

after executing 𝑐1, and take the union of all these outcome sets, where we use the more intuitive set

43

𝑐1/𝑠 → 𝑄 ∀𝑐′
1
𝑠′, 𝑄 (𝑐′

1
/𝑠′) ⇒ 𝑃 ((𝑐′

1
; 𝑐2)/𝑠′)

(𝑐1; 𝑐2)/𝑠 → 𝑃

𝑃 (𝑐2/𝑠)
(skip; 𝑐2)/𝑠 → 𝑃

𝑦 ∈ dom 𝑠 𝑧 ∈ dom 𝑠 𝑃 (skip/𝑠 [𝑥 := 𝑠 [𝑦] + 𝑠 [𝑧]])
(𝑥 = 𝑦 + 𝑧)/𝑠 → 𝑃

𝑠 [𝑏] ≠ 0 𝑃 ((𝑐; while(𝑏){𝑐})/𝑠)
(while(𝑏){𝑐})/𝑠 → 𝑃

𝑠 [𝑏] = 0 𝑃 (skip/𝑠)
(while(𝑏){𝑐})/𝑠 → 𝑃

0 < 𝑛 ∀𝑣, 0 ≤ 𝑣 < 𝑛 ⇒ 𝑃 (skip/𝑠 [𝑥 := 𝑣])
(𝑥 = rand(𝑛))/𝑠 → 𝑃

Figure 2.6: Selected small-step omnisemantics rules

notation

⋃
𝑠′∈𝑄 𝑃𝑠′ to denote (𝜆𝑠′′.∃𝑠′, 𝑄 𝑠′ ∧ 𝑃𝑠′ 𝑠′′). One can define precise rules for all constructs

of the language, but we found them harder to use, because when applying rules, one cannot freely

pick the postcondition, and the rule of consequence (weakening), a useful rule because it allows us

to forget irrelevant details, does not hold anymore.

2.5 The Small-Step Omnisemantics Judgment

One can also define small-step rules in omnisemantics style, as illustrated in Figure 2.6. The judg-

ment 𝑐/𝑠 → 𝑃 , where 𝑃 is a proposition over configurations, states that all immediate steps that

configuration 𝑐/𝑠 can take are safe and lead to a new configuration that satisfies 𝑃 .

In order to lift a single small step to multiple steps, we use the eventually operator given in

Figure 2.7b. Similarly to the transitive-reflexive closure operator given in Figure 2.7a, it has a base

case and a recursive case for the chaining, and their difference is the same as the difference between

the traditional and big-step rule for sequencing: The traditional one only considers one possible

middle state, whereas the omnisemantics rule universally quantifies over all of them.

Finally, inspired by temporal logic, we can also define an always operator, as shown in in Fig-

ure 2.8. We can either use an inductive invariant 𝐼 as shown in Figure 2.8a, and prove three premises

that establish, preserve, and use this invariant, or, if we are willing to use coinduction, we can use

a mid-condition 𝑄 that only needs to hold after the next step instead of always, as shown in Fig-

ure 2.8b, but in practice, one still needs to come up with an invariant, except that now it can be

outside of the rule. The two rules can be shown to be equivalent in Coq.
7

7
See https://github.com/mit-plv/coqutil/blob/c1caa082052a/src/coqutil/Semantics/OmniSmallstepCombinators.v

for the corresponding Coq code.

44

https://github.com/mit-plv/coqutil/blob/c1caa082052a/src/coqutil/Semantics/OmniSmallstepCombinators.v

𝑠 →∗ 𝑠

𝑠1 → 𝑠2
𝑠2 →∗ 𝑠3
𝑠1 →∗ 𝑠3

(a) Definition of the transitive-reflexive closure op-

erator lifting a traditional small-step judgment to

multiple steps

𝑃 𝑠

𝑠 →♦ 𝑃

𝑠1 → 𝑄

∀𝑠2, 𝑄 𝑠2 ⇒ 𝑠2 →♦ 𝑃

𝑠1 →♦ 𝑃

(b) Definition of the eventually operator lifting

an omnisemantics small-step judgment to multiple

steps

Figure 2.7: Lifting small-step judgments to multiple steps

𝐼 𝑠0 (∀𝑠, 𝐼 𝑠 ⇒ 𝑠 → 𝐼) (∀𝑠, 𝐼 𝑠 ⇒ 𝑃 𝑠)
𝑠0 →□ 𝑃

(a) Inductive definition using an invariant 𝐼

𝑃 𝑠0 𝑠0 → 𝑄 (∀𝑠, 𝑄 𝑠 ⇒ 𝑠 →□ 𝑃)
𝑠0 →□ 𝑃

(b) Coinductive definition

Figure 2.8: Inductive and coinductive definition of the omnisemantics always judgment

2.6 All Roads Lead to Omnisemantics

We present seven different interpretations of the omnisemantics big-step judgment. Each of them

represents a way one could discover it, and the fact that there are so many of them provides addi-

tional evidence that it makes sense to use this style of semantics. Moreover, these interpretations

should also provide the reader with more intuition about what this judgment means.

First interpretation: generalization from one result to a set of results The standard big-step

judgment 𝑡/𝑠 ⇓ 𝑣/𝑠′ relates one input configuration 𝑡/𝑠 to one single result configuration 𝑣/𝑠′.
The omnisemantics big-step judgment 𝑡/𝑠 ⇓ 𝑄 relates one input configuration 𝑡/𝑠 to a set

of results, described by 𝑄 . The omnisemantics big-step judgment thus appears as the immediate

generalization of the standard big-step judgment to go from one result to a set of results.

Second interpretation: a CPS version of the standard big-step judgment Consider the view of

the standard big-step judgment 𝑡/𝑠 ⇓ 𝑣/𝑠′ as a function that, given an input configuration 𝑡/𝑠 ,
returns (non-deterministically) a pair 𝑣/𝑠′. Now, consider the continuation-passing style (CPS)

version of that function. Instead of returning a 𝑣/𝑠′, it takes an additional argument𝑄 , the contin-

uation, and passes 𝑣/𝑠′ to𝑄 . In CPS, we are free to choose the return type of the continuation. Here,

45

we choose 𝑄 to have return type Prop, meaning that 𝑄 is a predicate over final configurations.

Third interpretation: a Hoare triple with a singleton precondition Consider a Hoare logic with

total correctness triples written {𝐻 } 𝑡 {𝑄}, with a precondition 𝐻 of type heap → Prop and a

postcondition 𝑄 of type val→ heap→ Prop (again, this type is isomorphic to sets of final con-

figurations). Such a triple asserts that, in any state 𝑠 satisfying the precondition 𝐻 , any possible

evaluation of 𝑡/𝑠 reaches a final configuration satisfying the postcondition 𝑄 . The omniseman-

tics big-step judgment is thus very closely related to the Hoare triple judgment.

On the one hand, Hoare triples may be defined in terms of the omnisemantics big-step judg-

ment, as follows.

{𝐻 } 𝑡 {𝑄} ≡ ∀𝑠, 𝐻 𝑠 ⇒ (𝑡/𝑠 ⇓ 𝑄)

On the other hand, the omnisemantics big-step judgment is equivalent to a Hoare triple with

a precondition that characterizes a single state. Let us write (= 𝑠) as a shorthand for 𝜆𝑠′′. 𝑠′′ = 𝑠 .

The following equivalence holds.

{(= 𝑠)} 𝑡 {𝑄} ⇐⇒ 𝑡/𝑠 ⇓ 𝑄

Fourth interpretation: an inductively defined weakest precondition The weakest-precondition

judgment has the samemeaning as the omnisemantics big-step judgment, i.e.wp 𝑡 𝑄 can be defined

as 𝜆𝑠.(𝑡/𝑠 ⇓ 𝑄). So, if omnisemantics big-step semantics is just a weakest precondition, what is

new about it? The novelty lies in the fact that the omnisemantics big-step judgment is directly de-

fined through a set of inductive rules which defines the semantics of the language in big-step style.

On the contrary, the weakest precondition judgment is typically defined as a derived judgment,

expressed with respect to a small-step semantics (or with respect to a big-step semantics, but only

in the particular case of deterministic semantics).

The reader may wonder whether it would be possible to define wp directly as an inductive

judgment. For example, in the let-binding case, one would like to consider the reasoning rule:

wp 𝑡1 (𝜆𝑣′.wp ([𝑣′/𝑥] 𝑡2)𝑄) ⊢ wp (let𝑥 = 𝑡1 in 𝑡2)𝑄

as part of the inductive definition of the judgment wp 𝑡 𝑄 . Yet, such a rule is not accepted by Coq

as an inductive definition because the nested occurrence of wp in the premise is not a positive

occurrence. This caveat is avoided in the omnisemantics big-step semantics through the use of the

intermediate postcondition 𝑄1 in the rule mbig-let:

46

mbig-let

𝑡1/𝑠 ⇓ 𝑄1

(
∀𝑣′ 𝑠′, 𝑄1 𝑣

′ 𝑠′ ⇒ ([𝑣′/𝑥] 𝑡2)/𝑠′ ⇓ 𝑄
)

(let𝑥 = 𝑡1 in 𝑡2)/𝑠 ⇓ 𝑄

Fifth interpretation: a generalized typing judgment Let us argue informally that the omnise-

mantics big-step judgment is a direct generalization of a typing judgment. To ease the discussion,

let us assume a purely-functional language, that is, ignore all details related to the state. In that

setting, the omnisemantics big-step judgment simplifies to 𝑡 ⇓ 𝑄 . As a first step towards a typing

judgment, let us write this judgment instead in the form ⊢ 𝑡 : 𝑄 . For this judgment, the rule

mbig-let becomes:

mbig-let (without effects)

⊢ 𝑡1 : 𝑄1

(
∀𝑣1 ∈ 𝑄1, ⊢ ([𝑣1/𝑥] 𝑡2) : 𝑄

)
⊢ (let𝑥 = 𝑡1 in 𝑡2) : 𝑄

For the second step, let us assume an environment-based semantics as opposed to a substitution-

based semantics—the two are equivalent. Concretely, the value 𝑣1 produced by 𝑡1 is no longer

substituted for 𝑥 in 𝑡2, but instead bound to 𝑥 in the environment 𝐸. We obtain the following rule.

mbig-let (without effects / with semantic environments)

𝐸 ⊢ 𝑡1 : 𝑄1

(
∀𝑣1 ∈ 𝑄1, (𝐸, 𝑥 ↦→ 𝑣1) ⊢ 𝑡2 : 𝑄

)
𝐸 ⊢ (let𝑥 = 𝑡1 in 𝑡2) : 𝑄

Finally, we can abstract semantic environments as typing environments in the following sense: rather

than binding in the environment a variable 𝑥 to an arbitrary value 𝑣1 that belongs in the set 𝑄1,

we can directly bind the variable 𝑥 to𝑄1. Essentially, this amounts to viewing the set𝑄1 as a type.

The result corresponds exactly to the standard typing rule for let-bindings.

mbig-let (without effects / with typing environments)

𝐸 ⊢ 𝑡1 : 𝑄1 (𝐸, 𝑥 : 𝑄1) ⊢ 𝑡2 : 𝑄

𝐸 ⊢ (let𝑥 = 𝑡1 in 𝑡2) : 𝑄

This discussion of the similarities between the omnisemantics big-step judgment and a typing

judgment explains well, we believe, the role of the intermediate postcondition 𝑄1 that appears in

the rule mbig-let: it plays exactly the same role as the type of 𝑡1 in the typing rule for let𝑥 = 𝑡1 in 𝑡2.

47

Sixth interpretation: Avoiding existentials when proving deterministic programs correct One

can state that a deterministic program 𝑡 , starting at state 𝑠 , does not get stuck and that its final

state will satisfy some postcondition 𝑄 as follows:

runs-to-satisfying(𝑡, 𝑠,𝑄) := ∃ 𝑣 𝑠′, 𝑡/𝑠 ⇓ 𝑣/𝑠′ ∧𝑄 (𝑣, 𝑠′)

However, as soon as one tries to prove properties about concrete or compiler-generated programs

using proof goals of shape runs-to-satisfying(𝑡, 𝑠,𝑄), it is inconvenient to deal with the existentials:
If we unfold runs-to-satisfying, the first proof stepwe have to do is to instantiate the two existentials

for the result value 𝑣 and the final state 𝑠′. Using Coq’s evar feature (section 5.2.5) to delay choosing

them does not help much, because at this point in the proof, the variables to be used to instantiate

them eventually might not yet be in scope. It is therefore more convenient to have backward

reasoning rules to step through the program 𝑡 one instruction at a time. Such backward reasoning

rules can be proven as derived lemmas. For instance, for let expressions, one could prove the

following lemma:

rt-step

𝑡1/𝑠 ⇓ 𝑣1/𝑠′ runs-to-satisfying([𝑣1/𝑥]𝑡2, 𝑠′, 𝑄)

runs-to-satisfying(let𝑥 = 𝑡1 in 𝑡2, 𝑠,𝑄)

However, one can also define runs-to-satisfying inductively, by interpreting the above rule as a

definition, and by adding the following rule for the base case:

rt-done

𝑄 (𝑣, 𝑠)

runs-to-satisfying(𝑣, 𝑠,𝑄)

And finally, when one wonders whether the evaluation of 𝑡1 in rt-step could also be expressed in

terms of runs-to-satisfying, one stumbles on the rule mbig-let presented before, up to renaming of

runs-to-satisfying into ⇓.

Seventh interpretation: Adding a postcondition to a safety judgment Wang et al. [2014] use a

coinductively defined judgment to define when all nondeterministic executions of a program are

safe (do not get stuck). For instance, using our notations, the rule for let expressions could be stated

as follows:

safe(𝑡1/𝑠) (∀𝑣 𝑠′, 𝑡1/𝑠 ⇓ 𝑣/𝑠′ =⇒ safe(([𝑣/𝑥]𝑡2)/𝑠′))

safe(let𝑥 = 𝑡1 in 𝑡2, 𝑠)

48

Now, when proving statements of the form safe(𝑡/𝑠) ∧ ∀𝑣 𝑠′, 𝑡/𝑠 ⇓ 𝑣/𝑠′ =⇒ 𝑄 (𝑣, 𝑠′), one might

wonder whether the safety judgment could not also take care of asserting that 𝑄 holds at the end.

Indeed it can, and what one obtains is, again, omnisemantics big-step semantics.

2.7 Related work

Schäfer et al. [2016] already used a similar style of semantics they called axiomatic semantics, and

used it to prove correctness of a compiler from a nondeterministic language to a deterministic

language, but they did not recognize that their approach would enable compiler phases with non-

deterministic target languages, nor the application to type safety.

While we can reason about a random() function as a function returning an arbitrary value, we

do not attempt to do probabilistic reasoning, unlike Polaris [Tassarotti and Harper, 2019].

Iris [Jung et al., 2018] also uses weakest precondition forward reasoning. 𝜆MC [Frumin et al.,

2019] is a small C-like language with nondeterministic expression evaluation order, defined on

top of Iris. It enables one to prove absence of undefined behavior in a given C program for any

evaluation order, using a weakest precondition generator and separation logic.

Big-step omnisemantics are different from Hoare logic [Hoare, 1969] in two ways: First, they

do not have preconditions, but only postconditions, and preconditions are obtained by outside

hypotheses. Second, the rule for loops does not require an invariant, but instead an outcome set

for one loop body iteration, and another derivation for the remainder of the execution. That is, the

depth of a Hoare logic derivation corresponds to the depth of the abstract syntax tree, whereas the

depth of an omnisemantics derivation corresponds to the number of loop iterations, the same way

as a big-step derivation would.

One key question is howmuch of a program’s internal nondeterminism should be reflected in its

execution trace. At one extreme, one could include in the trace an event for every nondeterministic

choice performed, as well as a delay event, a.k.a. a tick, to reflect in the trace each transition

performed by the program, following the approaches of Danielsson [2012]. More recent work on

interaction trees [Koh et al., 2019; Xia et al., 2019] maps each program to a coinductive structure

featuring ticks in addition to I/O steps. Yet, these approaches come at the cost of reasoning “up to

removal of a finite number of ticks.”

A promising route to avoiding ticks is the mixed inductive-coinductive approach of Nakata and

Uustalu [2010], for distinguishing between reactive programs that always eventually perform I/O

operations and silently diverging programs that eventually continue executing forever without per-

forming any I/O. Despite apparent benefits, this approach seems not to have gained popularity or

49

evaluation in the form of sizable case studies.

The refinement steps in Fiat [Delaware et al., 2015] can be seen as compilation passes that

reduce internal nondeterminism.

Cito [Wang et al., 2014] integrates calls to axiomatically specified external functions into its

big-step operational semantics, which talk about one execution at a time, and it uses a separate

judgment talking about all executions at once to define which initial states are “safe” in the sense

that no execution will fail. Omnisemantics can be seen as this safety judgment augmented with a

postcondition, or alternatively, Cito’s safety judgment can be seen as an omnisemantics judgment

where the postcondition is 𝜆𝑠 𝑓 𝑖𝑛𝑎𝑙 .True.

The problem of having to duplicate each big-step operational semantics rule for failure can be

addressed using pretty-big-step semantics [Charguéraud, 2013].

Lee et al. [2017] discuss undefined behavior and unspecified values in the context of LLVM.

Nondeterminism has also been studied using denotational semantics [Plotkin, 1976], and the

relationship between nondeterminism, concurrency, and communication was already being stud-

ied in the 1970s [Francez et al., 1979].

The idea that nondeterminism can not only be used to choose between a finite number of

statements to execute next, but also to axiomatically specify procedures, and that this requires

unbounded nondeterminism, was first described in [Back, 1980].

Some authors distinguish between demonic nondeterminism (what we call simply “nondeter-

minism” here) and angelic nondeterminism (a form of nondeterminism where only one possible

execution needs to satisfy the postcondition, rather than all of them), and study how these two

forms of nondeterminism are related to each other. This line of work was summarized by Hes-

selink [2010].

50

Chapter 3

The Bedrock2 Verified Compiler

I joined my advisor’s group because I was excited about the goal of proving an end-to-end theorem

about a system that spans both software and hardware (see chapter 8 for the result), and he already

had a PhD student (JoonwonChoi) working on the hardware side, and two students (Andres Erbsen

and myself) excited about the software side were about to join for PhD. As a first step towards

this goal, I developed a verified compiler (called “the Bedrock2 compiler”) from a simple, C-like

language (Bedrock2) to RISC-V [Waterman and Asanovic, 2019] machine code. Given that the

CompCert verified C compiler [Leroy, 2009a,b] already existed, one might wonder why we did not

reuse CompCert, and what the new research contributions of my compiler could be.

Regarding the first question, the original main motivation to start a verified compiler from

scratchwas to use a clean-slate source language design andmemorymodel that should be as simple

as possible, so that verifying programs against this source language would be easier than verifying

them against the notoriously complex C semantics (which I had experienced through VST during

my master’s thesis [Gruetter, 2017]). But after writing my compiler and having made many design

decisions informed by the goal to use it in end-to-end proofs, when comparing it to CompCert,

it became apparent that CompCert lacks several features that are required (or, at least, helpful) to

use it in bigger developments where the assumptions of the individual components’ correctness

proofs get discharged by the correctness theorems of the components’ adjacent components, and

I describe these below in section 3.1.

Regarding the second question, the main research contribution in my compiler is to show

how omnisemantics enable forward simulation proofs, which is described in more detail in chap-

ter 2, and, perhaps, some insight on how (not) to compose compiler phase correctness proofs (sec-

tion 3.5). But, more important than the research within the compiler, it has enabled other research,

51

such as the three projects described in Part II, but it was also used in the Silver Oak project
1
at

Google (unbeknownst to me until I joined the project in my internship), which proved correctness

of drivers for hardware accelerators used in the OpenTitan
2
root-of-trust project, and there are two

additional ongoing projects in my advisor’s group at MIT based on my compiler, one on proving

that the compiler does not introduce additional information leakage (e.g. through branching on

potentially secret values or through memory accesses whose addresses might depend on secret

values), and one on proving upper bounds on the running time of programs (measured in number

of executed instructions).

3.1 Advantages of the Bedrock2 Compiler

While developing the Bedrock2 compiler, I made several design decisions that were motivated by

the goal of including it in bigger end-to-end-verified software-hardware projects, and later, while

studying CompCert in more detail, I discovered that I had deviated from CompCert’s design deci-

sions in many more ways than just choosing a simpler source language, and that using CompCert

for our projects would have been quite difficult or even impossible. In the following, I will describe

how my compiler differs from CompCert and why these differences matter.
3

Simple source language semantics. The semantics of C are notoriously intricate. Trying to

demonstrate that formal methods can capture all these intricacies is an interesting (academic) ex-

ercise,
4
but as the interface between verified programs and a verified compiler, one should choose

a language that is as suitable for proofs as possible, which means that a language with simpler

semantics is better.

Simple, close-to-hardware memory model. CompCert and the Bedrock2 compiler each pick one

representation of memory and use that same representation for the source language, all intermedi-

ate languages, as well as the target language. However, the chosen representation differs between

the two:

In CompCert, a pointer is a tuple of a block ID (which is increased sequentially with each

allocation) and an offset, and memory is a map from such pointers to byte-sized fragments, but

1
https://github.com/project-oak/silveroak

2
https://opentitan.org/

3
The comparison to CompCert in this chapter refers to CompCert version v3.14, which is available at

https://github.com/AbsInt/CompCert/tree/v3.14.

4
This exercise has been carried out in even more detail than in CompCert, by e.g. Norrish [1998], Krebbers [2015],

Memarian et al. [2016] and others cited there.

52

https://github.com/project-oak/silveroak
https://opentitan.org/
https://github.com/AbsInt/CompCert/tree/v3.14

the memory representation also records the primitive C types (int, long, float, single, or pointer)

and values that each fragment is a part of, as well as read/write/deallocate permissions for each

address. The block ID of a pointer is an unbounded positive number, and the offset is a unbounded

integer number, so memories of arbitrary size (beyond 2
64
bytes) are possible, and there is no direct

correspondence between CompCert pointers and 32-bit or 64-bit addresses that are used on today’s

computers. CompCert’s source language semantics allow casting a pointer to an integer, but the

resulting integer remains tagged as coming from a pointer, and the only permissible operation on

that integer is to cast it back to a pointer.

In contrast, the Bedrock2 memory representation is simply a partial map from 32-bit or 64-

bit words to bytes. On one hand, this simple representation simplifies proofs of programs and of

the compiler, but on the other hand, it is also much closer to the memory model used in proofs

about hardware, which enables us to connect software proofs to hardware proofs, as described in

chapter 8.

All the way down to machine code. The Bedrock2 compiler emits a list of bytes that corre-

sponds to a sequence of RISC-V instructions, and its correctness proof is about the execution of

these bytes, as specified by riscv-coq (chapter 4). In contrast, the verified part of CompCert emits

idealized RISC-V
5
assembly.

6
It differs from actual RISC-V assembly by having pseudo-instructions

to allocate and free memory on the stack, and by pretending that each arithmetic instruction has a

32-bit and a 64-bit variant (whereas in actual RISC-V, most instructions are shared between 32-bit

and 64-bit architectures, and there are a handful of operations with a W suffix to operate on 32-bit

data on 64-bit machines). This idealized assembly is then processed by trusted OCaml code that

replaces the stack alloc/free pseudo-instructions by instructions that manipulate the stack pointer

(register X2)7 and then prints it to a text-based assembly file.
8
From there, linking, computing

offsets of jumps, and emitting the machine code is performed by the (unverified) GCC RISC-V

toolchain. Verified CompCert extensions that make it stack-aware and emit binary ELF files have

been developed [Wang et al., 2019, 2020], but they are closed-source and therefore cannot be used

by researchers outside the authors’ research group.

5
Contrary to the Bedrock2 compiler, CompCert also supports other instruction set architectures such as x86, ARM,

and PowerPC, but all these backends end at a similarly high-level idealized assembly language.

6
See file riscV/Asm.v in the CompCert sources

7
Function expand_instruction in riscV/Asmexpand.ml

8
Function print_instruction in riscV/TargetPrinter.ml

53

Support for nondeterministic language specifications. Nondeterminism is a useful feature for

defining language semantics, in particular when underspecification is desired. For example, when

specifying the operation of taking the address of a local variable in C, all we want to say is that this

operation returns a pointer to memory that is disjoint from all other knownmemory, but we do not

want to give the exact address, and we also do not want to introduce a deterministic (but opaque)

oracle function for it, because we would have to say that this oracle depends on some opaque state

and thread that state through all the semantics.

In Bedrock2, taking the address of a local variable is modeled using a stack allocation command

of the form let x := stackalloc(n) in c, which assigns to x a nondeterministically chosen pointer

to n bytes of memory that can be used within the command c.

Reasoning about code that takes the address of local variables is considered hard,
9
but I believe

that it becomes considerably simpler if nondeterminism is available as a specification tool.

Contrary to the Bedrock2 compiler, all intermediate and target languages of CompCert are de-

terministic, and this is a design choice that was made to enable forward simulation proofs. How-

ever, as described in chapter 2, using omnisemantics, we can get the best of both worlds, that is,

use nondeterminism and forward simulation proofs at the same time.

Avoid using axioms for potentially dischargeable assumptions and parameters. Coq provides

an Axiom command that lets the user state a proposition that Coq will consider as true without

requiring a proof for it. Using this command can threaten the soundness of a whole proof devel-

opment, because an axiom could be false, or it could contradict other axioms in a way that might

have been exploited in a proof. Tomake it easier to audit proofs, Coq provides a Print Assumptions

myTheorem command, which traverses the proof of myTheorem and the proofs of all its transitive

dependencies to collect and print all the axioms on which myTheorem depends. When auditing

a Coq theorem, one therefore has to study not only the list of explicitly stated hypotheses of the

theorem, but also the list of axioms returned by Print Assumptions. These two lists are part of the

trusted code base of a development, and an important selling point of using Coq is that it enables ex-

ceptionally small trusted code bases – if the development is structured appropriately. In particular,

whenever one component of a development makes an assumption that can be discharged by the

correctness proof of another, one should perform this modus ponens step, so that in the combined

end-to-end theorem, the assumption does not appear anymore, and the trusted code base remains

small.

Metatheoretically, the choice of whether to make an assumption an axiom (top of Figure 3.1a)

9
Personal communication with several members of the Verified Software Toolchain team

54

Axiom p_holds: P.
Theorem q_holds: Q.
Proof.
... proof using the axiom ...
Qed.

... later:

Theorem p_is_actually_provable: P.
Proof. ... Qed.

Theorem end_to_end: Q.
Proof.
no way to combine q_holds and
p_is_actually_provable :(

Abort.

(a) Theorem q_holds uses an axiom

Theorem q_holds: P → Q.
Proof.
... proof using the hypothesis ...
Qed.

... later:

Theorem p_is_actually_provable: P.
Proof. ... Qed.

Theorem end_to_end: Q.
Proof.
apply q_holds.
apply p_is_actually_provable.

Qed.

(b) Theorem q_holds uses a hypothesis

Figure 3.1: Making an assumption an axiom vs. making it a hypothesis

or a hypothesis (top of Figure 3.1b) does not matter, in the sense that the proof obligations that

Coq asks the user to prove are the same. But when it comes to software engineering and easing the

auditing of a proof development, the two choices are very different: Since Coq’s Axiom command

was originally intended only for axioms that cannot (or will never) be proven in Coq, there is no

way in Coq to discharge an axiom (e.g. p_holds) assumed by a theorem (e.g. q_holds) to construct

a new, axiom-free theorem (end_to_end): This modus ponens step can be performed only if the

assumption was made a hypothesis, like in Figure 3.1b.

However, if many lemmas in a proof development all depend on some assumption P, it might ap-

pear cumbersome to make P an explicit assumption of all these lemmas, and one might be tempted

to state it as an Axiom instead, so that the lemmas do not all need to have P as an explicit assumption.

Unfortunately, CompCert uses the Axiom command for this purpose, and therefore, its output of

Print Assumptions on the top-level theorem
10

contains not only truly non-dischargeable axioms

such as e.g. functional extensionality or the law of the excluded middle, but also dischargeable

parameters such as compiler options and assumptions about the semantics of inline assembly and

external functions. Discharging these assumptions in an end-to-end proofwould requiremodifying

CompCert’s source code to hard-code the parameters and axioms to concrete values and proofs

10transf_c_program_correct in the file driver/Compiler.v

55

about them. So one could not use CompCert as an unmodified library, and if a development wanted

to use two different instantiations of CompCert, it would have to use two copies of CompCert that

live in different namespaces, which would require adapting the import statements at the top of all

files – clearly an undesirable situation from a software engineering point of view.

In contrast, the Bedrock2 compiler uses hypotheses for all its parameters and assumptions so

that they can be discharged later, and the output of Print Assumptions compiler_correct11 only

contains two non-dischargeable axioms from Coq’s standard library: propositional and functional

extensionality.

Parameterization over behavior and compilation of external functions. Instead of using axioms

for the assumptions about the behavior of external functions (like CompCert does), the Bedrock2

compiler uses Coq’s Section command and typeclasses to parameterize the development over

them, and also over a compilation function for these external calls, which has to satisfy the same

correctness theorem as the compiler itself. This mechanism is described in more detail in sec-

tion 3.4, and was successfully used in the lightbulb (chapter 8) and garage door (chapter 9) case

studies.

Parameterization over bitwidth. The CompCert and Bedrock2 compiler both support 32-bit as

well as 64-bit architectures. However, the parameterization over the bitwidth is done by the build

system in CompCert, whereas it is done inside Coq’s logic for the Bedrock2 compiler. Therefore,

CompCert needs to be compiled twice (separately for each bitwidth), and if a development wanted

to use both the 32-bit and 64-bit version at the same time, it would have to use two copies of

CompCert living in separate namespaces.

Correctness theorems about individual compiled functions. As explained in more detail in sec-

tion 3.5, the correctness theorem of the Bedrock2 compiler can be used to reason about the be-

havior of individual compiled functions. This ability is crucial for the kind of reasoning done in

Silver Oak
12
and in the Softmul (chapter 10) case study. In contrast, CompCert’s correctness the-

orem only talks about whole programs. It does have a correctness theorem about separate compi-

lation, but while this theorem allows separate compilation of individual functions, the correctness

guarantee only applies to whole linked programs.

11
This theorem is in the file Pipeline.v.

12
https://github.com/project-oak/silveroak

56

https://github.com/project-oak/silveroak

Running the compiler inside the proof assistant. Being able to run the compiler inside the proof

assistant has two advantages: On one hand, when proving a theorem about the behavior of a con-

crete program that was compiled with the compiler, we can discharge the assumption that compil-

ing the source program resulted in the target program, leading to fewer explicit assumptions in our

end-to-end theorems; and on the other hand, we do not need to assume that Coq’s extractionmech-

anism for exporting Coq (Gallina) to OCaml is correct, which leads to fewer implicit assumptions

(and a smaller trusted code base) in our end-to-end theorems.

The Bedrock2 compiler has been designed from the very start to be runnable inside Coq, which

required avoiding the use of the sumbool type and other types that introduce proof terms into the

terms that are supposed to be executable, because proof terms are often too big to be executed, and

they also usually contain theorems that are marked as opaque and thus do not reduce. Some effort

towards adopting this coding style was also made in CompCert [Leroy, 2015], but it seems that the

changes described there were not merged, and the main recommended way of running CompCert

is still via extraction to OCaml.

License. Finally, less relevant from a research point of view, but more relevant from an adoption

point of view, the CompCert non-commercial license agreement is a non-free license that could

be revoked at any time, which makes CompCert and any project depending on it unlikely to be

adopted by any free-and-open-source project.

3.2 The Bedrock2 Source Language

The Bedrock2 source language is an untyped, simple imperative language. All variables are 𝑛-bit

integers, where 𝑛 is the bitwidth of the processor (32 or 64). Whether a value is to be treated

as an unsigned or signed integer or as a pointer is not derived from types but from the operator

being applied. For instance, there are two different right-shift operators, one for signed and one

for unsigned right-shifts.

The grammar of expressions is given in Figure 3.2a. Note that, contrary to C, expressions are

side-effect-free and cannot contain function calls. This restriction simplifies the reasoning, and

completely sidesteps any evaluation order questions, because all expression evaluation orders lead

to the same result.

The inlinetable𝑁 (𝑡) (𝑒) construct can be used to embed data (a list of bytes 𝑡) in source code.

It is used in the garage door case study (chapter 9) to store a pre-computed list of constants required

in the computation of IP checksums, as well as to embed the public key of the garage owner in the

57

𝑒 ::=

𝑣 integer literal

𝑥 local variable

load𝑁 (𝑒) load 𝑁 bytes from address 𝑒 , 𝑁 = 1, 2, or 4

loadW(𝑒) load one word (i.e. 4 bytes on 32-bit machines, 8 on 64-bit)

𝑒1 op 𝑒2 binary operation, op = +, -, *, &, . . .
𝑒1 ? 𝑒2 : 𝑒3 conditional

inlinetable𝑁 (𝑡) (𝑒) load 𝑁 bytes starting at the 𝑒-th byte of constant byte list 𝑡

(a) Grammar of expressions

𝑐 ::=

skip do nothing

𝑥 = 𝑒 assignment to local variable

store𝑁 (𝑒1, 𝑒2) store the lower 𝑁 bytes of 𝑒2 at address 𝑒1, 𝑁 = 1, 2, or 4

storeW(𝑒1, 𝑒2) store 4 or 8 bytes, depending on bitwidth, at address 𝑒1
if (𝑒) 𝑐1 else 𝑐2 if-then-else

𝑐1; 𝑐2 sequence

while (𝑒) 𝑐 while loop

𝑥1, . . . 𝑥𝑛 = 𝑓 (𝑒1, . . . 𝑒𝑚) call function 𝑓 and assign return values to 𝑥1, . . . 𝑥𝑛
let 𝑥 := stackalloc(𝑛) in 𝑐 allocate 𝑛 bytes of memory on the stack

(b) Grammar of commands

Figure 3.2: Grammar of the Bedrock2 source language

58

source code.

The main motivation for adding conditionals at the expression level is to use them to define

syntactic sugar for lazy && and ||. There is also syntactic sugar for Boolean not.

The grammar of commands is given in Figure 3.2b. Unlike in C, functions can have multiple

return values. Although not shown in Figure 3.2b, the grammar in Coq syntactically distinguishes

calls to Bedrock2-defined functions and calls to external functions. For specification purposes, the

latter are recorded in an interaction trace (which, as a purely specificational artifact, does not exist

at runtime).

Local variables cannot be addressed. Instead, there is a stack allocation construct of the form

let x := stackalloc(n) in c, which assigns to x a nondeterministically chosen pointer to n bytes

of memory that can be used within the command c.

3.3 Compilation Phases

Figure 3.3 shows the compilation pipeline. The names next to the arrows are the names of the

phases, and the names between the arrows are the names of the intermediate languages.

First, in FlattenExpr, the expressions in the source code are flattened, so that all operators

assign their results to temporary variables. This language is called FlatImp, and it still uses the same

type of variables as the source language, namely strings. Next, two optimizations (contributed by

my undergraduate mentee Arthur Reiner de Belen) are run:

UseImmediate detects and marks binary operators where one argument is a constant, so that

later, the FlatToRiscv phase can use RISC-V’s immediate instructions that place the constant in a

bitfield of the instruction. This optimization reduces the number of variables, because the constants

do not need to be assigned to variables first anymore.

The next optimization phase, DeadCodeElim, eliminates all assignments to unused variables,

including the ones that became unnecessary because of UseImmediate.

Then, the RegAlloc phase performs register allocation based on a linear scan, replacing the

string variable names by variable indices of type ℤ. After this phase, there can still be arbitrarily

many variables, but variables smaller than 32 stand for registers,
13

and variables greater than or

equal to 32 stand for stack slots, i.e. variables that will be spilled in the next phase. For simplicity,

there is no SSA (static-single-assignment) transformation, and the register allocator assigns one

live interval to each variable, which might be an over-approximation if the variable is not live

13
The RISC-V ISA has 32 registers.

59

Bedrock2 source language

FlatImp with string vars

FlatImp with string vars

FlatImp with string vars

FlatImp with ℤ vars

FlatImp with at most 31 ℤ vars

List of RISC-V instructions

List of bytes

FlattenExpr

UseImmediate

DeadCodeElim

RegAlloc

Spilling

FlatToRiscv

Encode

Figure 3.3: Phases (next to arrows) and intermediate languages between them

60

during some sub-intervals of its assigned interval. The live intervals are sorted by length, and one

after the other, starting with the shortest one, is assigned to the lowest available ℤ variable. This

sorting heuristic tends to put short-lived variables into registers (ℤ variables with lower indices),

and if stack slots are needed, they will contain the longer-lived variables, which is beneficial under

the assumption that the longer-lived variables are not accessed as frequently as the short-lived

temporaries.

The structure of this register allocation algorithm does not at all follow the structure of the ex-

ecution of the code, and therefore, proving correctness of the register allocation algorithm would

be really hard. Instead, this phase is followed by a checker that traverses the source and target pro-

grams of the register allocation phase simultaneously, checking that they have the same structure

and maintaining a mapping from source variables to target variables to check that each target pro-

gram variable usagewill see the correct value. This checkermight, in theory, reject target programs

emitted by the register allocator, but in practice, it did not reject any examples we tried. The cor-

rectness statement of this phase says that if the checker succeeds, the target program behaves like

the source program, and is much easier to prove, because the checker follows the structure of the

execution of the program quite closely.

Next, the Spilling phase uses the stackalloc command to create stack slots for all variables

whose indices are greater or equal 32, and replaces each read of a spilled variable by a load from the

corresponding stack slot to a temporary register, and also replaces each write of a spilled variable

by a store to the corresponding stack slot, via a temporary register. After spilling, all used variable

indices are less than 32.

From there, the FlatToRiscv phase compiles code directly to a list of position-independent

RISC-V instructions, without using any intermediate assembly language with features such as la-

bels or pseudo-instructions where one pseudo-instruction could result in a variable number of

machine instructions. In order to emit the correct relative jumps for function calls, the compiler

needs to know the position of the callee relative to the caller, which it obtains from a partial map

from function names to relative positions. To compute this map, we need to know the size of each

compiled function, so we run the compiler a first time with a dummy map and then a second time

with the actual map.

Finally, the Encode phase turns the list of RISC-V instructions into a list of bytes as specified

by RISC-V, using an encoding function implemented in Coq, which is proven to be the inverse of

the decoding function specified in the RISC-V Coq specification.

61

3.4 Parameterization over the External-Calls Compiler

All phases above FlatToRiscv leave external calls unchanged, but once we want to emit RISC-V,

we need to know how to turn external calls into actual RISC-V code. For instance, an external

call might get replaced by a system call instruction or by a jump to a special address, or, on a

processor with a custom instruction, by such a custom instruction, or, to performmemory-mapped

I/O (MMIO), by a load or store at a special address. These examples just should serve to illustrate

the intended generality of the external-calls feature of Bedrock2, but so far, the only instantiation

that was actually used is MMIO.

The parameterization over different external-calls compilers works as follows: The specifica-

tion of the compiler from FlatImp to RISC-V is expressed as a predicate

Definition compiles_FlatToRiscv_correctly

(f: funname_env Z → Z → stmt → list Instruction)

(s: stmt): Prop := ...

which takes in a compilation function f and a FlatImp statement s, where f takes in the map of

relative function positions described above, the relative position of the statement being compiled,

and a statement, and returns a list of RISC-V instructions.

compiles_FlatToRiscv_correctly asserts that if execution of s succeeds according to the FlatImp

semantics and all executions end up in some set of states P, then a RISC-V machine whose memory

contains the instructions emitted by f called on s runs into a state which corresponds to a FlatImp

state in P.

The main compiler from FlatImp to RISC-V is parameterized over the implementation of the

external-calls compiler, and its correctness proof assumes the same correctness statement about

the external-calls compiler as the one it proves for the main compiler:

Lemma compile_stmt_correct:

(forall resvars extcall argvars,

compiles_FlatToRiscv_correctly compile_ext_call (resvars ← extcall(argvars))) →
(forall s,

compiles_FlatToRiscv_correctly compile_stmt s).

The final correctness theorem of the compiler that composes all phases is also parameterized

over the external-calls compiler, its correctness assumption, and over the semantics of external

calls. Each use case can then instantiate these differently. For instance, the lightbulb (chapter 8)

and the garage door (chapter 9) case studies instantiate external calls to an MMIO read and write

62

function that get compiled to a RISC-V load and store instruction, whereas the Softmul (chapter 10)

case study does not use any external calls and therefore just uses external-call semantics that al-

ways return False, i.e. that disallow external calls, and uses a dummy external-calls compiler that

returns the empty list of instructions no matter what its input is.

3.5 How (not) to Compose Compiler Phase Correctness Proofs

Intuitively, it seems obvious that if we have correctness proofs for some compiler phases, and

we run the phases in sequence, the composed compiler pipeline is also correct. However, for-

malizing this intuition in such a way that the resulting proof is both usable and maintainable is

surprisingly hard, and I spent a considerable amount of engineering effort on this problem. And

apparently I am not alone: In his PLDI’24 keynote about CakeML, Magnus Myreen, the head of

the CakeML [Kiam Tan et al., 2019] project, gave a candid account of what he believes the CakeML

team did well and not so well, and his presentation contained the following anecdote: Adding new

optimization phases to the CakeML compiler can make for nice undergraduate projects, and since

the undergrads prove the optimization phases correct, they do not risk breaking the compiler, even

if they are not experienced compiler developers and do not understand the rest of the pipeline. But,

as Myreen continued, this nice story also has a less-nice side: Whenever an undergrad finishes a

new optimization phase and its correctness proof, the phase has to be integrated into the pipeline,

and the proof of the pipeline needs to be updated, and this step is usually done by Myreen, and he

estimates that it requires about the same amount of work as the optimization itself.

3.5.1 Approach 0: No Explicit Concept of Phase Composition

He did not go into further detail on why it takes so much work, but one reason might be that the

CakeML compiler
14

does not introduce an explicit concept for the notion of composing compiler

phases: Instead, themain compiler pipeline function
15
is just a series of plain let-in expressions, one

for each phase. Each individual phase correctness lemma says that the semantics of the compiled

program equal (or, depending on the phase, are a subset of) the semantics of the source program,

where the semantics of a language are a set of behaviors, and a behavior
16

can be to Terminate

(with a finite list of I/O events), to Diverge (with a potentially infinite stream of I/O events), or to

14
This discussion refers to CakeML v2419, available at https://github.com/CakeML/cakeml/.

15
See definition of compile in compiler/backend/backendScript.sml

16
See semantics/ffi/ffiScript.sml

63

https://github.com/CakeML/cakeml/

Fail. The correctness proof17 of this pipeline does not seem to have a very principled structure,

spans over 800 lines, and invokes the individual phase correctness lemmas, as well as tactics to

discharge side conditions and glue everything together.

Originally, my compiler’s pipeline correctness proof also did not use any formalized structure,

and each time I added (or sometimes, changed) a phase, considerable work in the pipeline correct-

ness proof was required.

3.5.2 Approach 1: Chaining Simulations and State Relations

To improve the situation, I tried using and composing simulations. I used omnisemantics forward

simulations (chapter 2), but the issues discussed in this section also apply to traditional backward

simulations.

To illustrate with simplified formulas, let us assume that we have a notion of simulation that

takes three arguments, exec1, exec2, and 𝑅, where exec1 refers to the source language semantics,

exec2 to the target language semantics, and 𝑅 is a relation between source language states and

target language states, asserting that the target language state contains a program obtained by

compiling the program found in the source language state, as well as data corresponding to the

source language state’s data, potentially in a different format in case the phase introduces state rep-

resentation changes.

If using omnisemantics forward simulations, simulation would be defined as follows:

simulation exec1 exec2 𝑅 := ∀𝑠1 𝑠2 𝑃1, 𝑅 𝑠1 𝑠2 ∧ exec1 𝑠1 𝑃1 ⇒ exec2 𝑠2 (𝜆𝑠′2. ∃𝑠′1, 𝑃1 𝑠′1 ∧ 𝑅 𝑠′
1
𝑠′
2
)

Whereas, if using traditional backward simulations, it would be defined as follows:

simulation exec1 exec2 𝑅 := ∀𝑠1 𝑠2 𝑠′2, 𝑅 𝑠1 𝑠2 ∧ exec2 𝑠2 𝑠′2 ⇒ ∃𝑠′1, 𝑅 𝑠′
1
𝑠′
2
∧ exec1 𝑠1 𝑠′1

We can then define composition of two state relations 𝑅12 and 𝑅23 the usual way:
18

𝑅12 ◦ 𝑅23 := 𝜆 𝑠1 𝑠3. ∃𝑠2, 𝑅12 𝑠1 𝑠2 ∧ 𝑅23 𝑠2 𝑠3

No matter which of the two definitions of simulationwe use, the following simulation composition

17compile_correct' in compiler/backend/proofs/backendProofScript.sml
18
For brevity, we omit types, but of course, each state type can be a different type, so the whole definition universally

quantifies over state types 𝑆1, 𝑆2, 𝑆3, and 𝑅12 has type 𝑆1 → 𝑆2 → Prop, and 𝑅23 has type 𝑆2 → 𝑆3 → Prop.

64

lemma holds
19
for all exec1, exec2, exec3, 𝑅12 and 𝑅23:

simulation exec1 exec2 𝑅12 ⇒ simulation exec2 exec3 𝑅23 ⇒ simulation exec1 exec3 (𝑅12 ◦ 𝑅23)

By applying this lemma repeatedly, we can obtain a compiler correctness lemma for a whole

pipeline consisting of 𝑛 phases, resulting in simulation exec1 exec𝑛 (𝑅12 ◦ 𝑅23 ◦ · · · ◦ 𝑅𝑛−1,𝑛).
However, from a usability point of view, this solution is not great: If we want to use the com-

piler correctness theorem as a bring-up recipe that tells us how to initialize a system to ensure that

the compiled program will run on it correctly, we need to make sure that (𝑅12 ◦ · · · ◦ 𝑅𝑛−1,𝑛) 𝑠1 𝑠𝑛
holds for the initial target system state 𝑠𝑛 and for some source level state 𝑠1, so we need to un-

fold the whole (𝑅12 ◦ · · · ◦ 𝑅𝑛−1,𝑛), and adding new compilation phases can break usages of the

compiler correctness theorem. Clearly, this is undesirable: The relations 𝑅 should but cannot be

considered an opaque implementation detail of the compiler correctness proof.

Note that up to here, we assumed that each relation 𝑅 asserts that the source language state

contains a source program, and the target language state contains the target program obtained

from compiling the source program. Removing this condition from 𝑅 and mentioning it explicitly

in the definition of simulation and in the simulation composition lemma improves the situation

slightly, but still imposes the burden of having to plough through all of 𝑅12 ◦ · · · ◦ 𝑅𝑛−1,𝑛 in order

to know how to set up a target system so that the compiler correctness theorem will hold.

3.5.3 Approach 2: Per-Language Initial-State and Final-State Predicates

CompCert solves the problem described in the previous section by making the relations 𝑅 between

the states an opaque implementation detail of the compiler phase correctness proofs and by intro-

ducing, for each intermediate language, a unary predicate 𝐼 over states that says which states are

initial states, and a predicate 𝐹 that relates final states to int exit codes. Figure 3.4b depicts this

approach. The bring-up recipe for the target system is now very simple: Any initial state 𝑠𝑛 of

the target system that satisfies 𝐼𝑛 is acceptable. However, this approach has two limitations: First,

for each compilation phase from a language 𝐿1 to a language 𝐿2, it one must prove that if 𝐼1(𝑠1)
and 𝐼2(𝑠2) hold, then the state relation 𝑅12 𝑠1 𝑠2 holds. This condition makes it impossible to start

with application-dependent initial states and essentially requires execution to start with an empty

memory (or with a hard-coded, application-independent initial memory). And second, the com-

19
Coq proofs of this lemma, for both definitions of simulation, are given in Appendix A and are straightforward.

65

𝑆1

𝑆2

𝑆𝑛−1

𝑆𝑛

𝑅12

...

𝑅𝑛−1,𝑛

Bring-up recipe: 𝑠𝑛 s.t.

(𝑅12 ◦ · · · ◦ 𝑅𝑛−1,𝑛) 𝑠1 𝑠𝑛

(a) Approach 1: Chaining

simulations and relations

𝐼1 ⊂ 𝑆1

𝐼2 ⊂ 𝑆2

𝐼𝑛−1 ⊂ 𝑆𝑛−1

𝐼𝑛 ⊂ 𝑆𝑛

...

int

return

value

𝐹1

𝐹2

𝐹𝑛−1

𝐹𝑛

Bring-up recipe:

𝑠𝑛 s.t. 𝐼𝑛 (𝑠𝑛)

(b) Approach 2 (CompCert):

Per-language initial-state and

final-state predicate

𝑆1

𝑆2

𝑆𝑛−1

𝑆𝑛

...

common

state

before/after

function calls

𝐶1

𝐶2

𝐶𝑛−1

𝐶𝑛

Bring-up recipe:

contained in 𝐶𝑛

(c) Approach 3 (Bedrock2

compiler): Per-language

function-call spec based on

common state

Figure 3.4: Chaining state relations vs. relating phase-specific states to a common state

posed compiler correctness theorem only talks about execution of whole programs.
20

However,

being able to use the compiler correctness theorem to prove how individual compiled functions

behave is crucial for the kind of reasoning done in Silver Oak
21

and in the Softmul (chapter 10)

case study.

3.5.4 Approach 3: Per-Language Function-Call Specs

So, does that mean that if we want to get per-function correctness theorems, we need to go back

to relation chaining (Approach 1 in section 3.5.2)? Not quite, as Figure 3.5 illustrates: If we can

identify some state type 𝑆𝑐 that contains the common essence present in the state types of all

languages, we can, in order to relate two state types 𝑆1 and 𝑆2, take a detour through that common

state 𝑆𝑐 , via two relations 𝐶1 and 𝐶2. Then, if we chain 𝑛 phases, as illustrated in Figure 3.4c, the

complexity of the bring-up recipe for the lowest-level initial state does not grow proportionally

20
There is also a correctness theorem for separate compilation, but it only says something about the behavior of a

whole program obtained by linking separately compiled functions.

21
https://github.com/project-oak/silveroak

66

https://github.com/project-oak/silveroak

𝑆1

𝑆2

𝑅12

𝑆1

𝑆2

𝑆𝑐

𝐶1

𝐶2

Figure 3.5: Replacing a direct relation 𝑅12 by a detour through a common state 𝑆𝑐

with 𝑛, but stays the same, namely just the lowest-level 𝐶𝑛 .

In general, it might not always be possible to find a common state that can easily be related to

the states of all intermediate languages, but in the case of the Bedrock2 compiler, it turns out to be

possible. If we choose to look only at the state before and after function calls, the common state

can be described as consisting of the following three components:

• The trace of I/O events that happened so far

• The high-level (Bedrock2 source language level) memory

• A list of fixed-size (32 or 64 bits) words that represents the function arguments before a

function call or the function’s return values
22
after the function call

Moreover, it turns out that for composing phases, instead of using an exec judgment that can

execute arbitrary program snippets, it works better to use a call judgment that defines, for each

language, how functions are called in that language. Conveniently, if we use the common state

described above, call judgments can have the same generic type signature in all languages, namely

𝑃 → string→ trace→ mem→ list word→ (trace→ mem→ list word→ Prop)→ Prop

where 𝑃 is the type of programASTs and is the only aspect that differs across languages, the string

represents the name of the function to be called, the trace and mem represent the state before the

function call, the following list word represents the function arguments, and the last argument is

a postcondition over the state and return values after the function call. So, for a compile function

from a source language with a call judgment call1 to a target language with a call judgment call2,

we can define its correctness as follows:

phase_correct compile call1 call2 :=

∀𝑝1 𝑝2, compile 𝑝1 = Some 𝑝2 ⇒ ∀𝑓 𝑡 𝑚 𝑎𝑟𝑔𝑠 𝑄, call1 𝑝1 𝑓 𝑡 𝑚 𝑎𝑟𝑔𝑠 𝑄 ⇒ call2 𝑝2 𝑓 𝑡 𝑚 𝑎𝑟𝑔𝑠 𝑄

As shown in the Coq code in Figure A.3 in Appendix A, it is trivial to compose this notion of

22
Note that unlike in C, Bedrock2 functions can have multiple return values.

67

phase_correct to combine correctness proofs of individual phases into a correctness proof of a

whole compiler pipeline.

To give two examples of call judgments, here is a (slightly simplified) call judgment for the

Bedrock2 source language:

Definition call e t m argvals Q := exists argnames retnames fbody l,

map.get e f = Some (argnames, retnames, fbody) ∧
map.of_list_zip argnames argvals = Some l ∧
exec e fbody t m l (fun t' m' l' ⇒ exists retvals,

map.getmany_of_list l' retnames = Some retvals ∧ Q t' m' retvals).

At this level, programs are function environments 𝑒 that map function names to triples of their ar-

gument names, return names, and function bodies, and the exec judgment is the big-step omnise-

mantics judgment that gives the semantics of any statement, with respect to a state that consists

of a trace t, a memory m, and a map of local variables l.

On the other hand, at the RISC-V level, the type of a program is a triple consisting of a list of

instructions, a position map mapping each function name to the relative position of the function

within the instruction list, and an integer computed by the compiler that indicates the required

stack size
23
to run the program. The definition of call (𝑖𝑛𝑠𝑡𝑟𝑠, 𝑝𝑜𝑠𝑚𝑎𝑝, 𝑠𝑡𝑎𝑐𝑘𝑠𝑖𝑧𝑒) 𝑓 𝑡 𝑚𝐻 𝑎𝑟𝑔𝑣𝑎𝑙𝑠 𝑄

at the RISC-V level is a bit lengthy
24

but can be summarized in English as follows: The function

position map 𝑝𝑜𝑠𝑚𝑎𝑝 needs to contain the relative position 𝑝 𝑓 of the function named 𝑓 . Then, if

one starts with a RISC-V machine that satisfies the following conditions:

• The argument registers contain 𝑎𝑟𝑔𝑣𝑎𝑙𝑠 .

• Below
25
the address stored in the stack pointer register, there are at least 𝑠𝑡𝑎𝑐𝑘𝑠𝑖𝑧𝑒 words of

memory available.

• The instructions 𝑖𝑛𝑠𝑡𝑟𝑠 are in the machine memory at some address 𝑝funcs.

• The program pointer points to 𝑝funcs + 𝑝 𝑓 .
• The machine memory contains the source-level memory𝑚𝐻 .

Then, if one runs the machine according to riscv-coq semantics, it will eventually reach a state

satisfying the following conditions:

• The argument registers contain return values accepted by the postcondition 𝑄 .

23
Since we do not support recursive calls and only allow constant-sized stack allocation, this number is easy to

calculate.

24
https://github.com/mit-plv/bedrock2/blob/2223b2a2f7/compiler/src/compiler/LowerPipeline.v#L378

25
We say “below” instead of “at” because the stack grows downwards.

68

https://github.com/mit-plv/bedrock2/blob/2223b2a2f7/compiler/src/compiler/LowerPipeline.v#L378

• The stack pointer is the same as it was before.

• The instructions are still at the same location in the memory.

• The program pointer points to the address that was stored in the return address register

before the function call.

• The machine memory contains updated source-level memory 𝑚′
𝐻
that is accepted by the

postcondition 𝑄 .

• The updated I/O event trace is accepted by the postcondition 𝑄 .

• All registers except the caller-saved registers are still the same as before the function call.

Note that no matter how many phases we stack on top of the last phase, the final correctness

theorem will always be in terms of the RISC-V call judgment described above, which might seem

a bit lengthy, but is precise enough to allow calling individual functions, and can still be simplified

further when the full source program is known, as shown in the top-level theorems of each of the

case studies in Part II.

3.5.5 Conclusion

Approach 3 so far has satisfied all our requirements: It results in a usable compiler correctness

theorem, in particular, one that can serve as a bring-up recipe on how to initialize a RISC-Vmachine

before running a single function (as opposed to being able to run only whole programs). Moreover,

it is alsomaintainable, in the sense that inserting newphases into the pipeline does not break usages

of the overall compiler correctness theorem, and in the sense that as a part of his undergraduate

project, Arthur Reiner de Belen was able to integrate his two optimizations (UseImmediate and

DeadCodeElim) into the pipeline on his own.

69

70

Chapter 4

Formal Semantics For an Industrial ISA1

A formal, executable specification of the RISC-V instruction-set architecture (ISA) was developed

in Haskell by Ian Clester and Thomas Bourgeat.
2
As explained further in [Bourgeat et al., 2023],

it was designed to support many different use cases, including simulation of RISC-V programs

with different kinds of I/O, interactive theorem proving, model-checking of all possible program

executions under weak memory, and compilation to hardware circuits.

Duringmy PhD, I implemented andmaintained the interactive theorem proving use case, called

riscv-coq
3
for short. I started the project in February 2018, and at the time of writing, July 2024,

it is still active, and I am mentoring an MEng student on extending the specification with support

for the vector extension.

This chapter will give an overview of the organization of the RISC-V specification in section 4.1,

show in section 4.2 how large parts of the Haskell specification can automatically be translated to

Coq, and explain in section 4.3 how the parts that were deliberately left unspecified in the generic

specification can be instantiated to obtain a specification that is suitable for interactive theorem

proving.

I consider the main result of this chapter to be the software artifact: It is the first formal speci-

fication of an industrial ISA that has been used to prove a compiler as well as a processor against

it in such a way that the ISA specification cancels out in an end-to-end theorem. And additional

insight is how to (and how not to) bridge definitions in monadic style to weakest-precondition

1
This chapter of the dissertation contains text copied and adapted from the ICFP’23 paper I co-authored with

Thomas Bourgeat, Ian Clester, Andres Erbsen, Pratap Singh, Andy Wright, and Adam Chlipala [Bourgeat et al., 2023],

as well as text copied and adapted from the PLDI’21 paper (and previous, unpublished longer versions of it) I co-

authored with Andres Erbsen, Joonwon Choi, Clark Wood, and Adam Chlipala [Erbsen et al., 2021].

2
The Haskell code is available at https://github.com/mit-plv/riscv-semantics.

3
The Coq code and translation setup is available at https://github.com/mit-plv/riscv-coq.

71

https://github.com/mit-plv/riscv-semantics
https://github.com/mit-plv/riscv-coq

style and omnisemantics style (section 4.3.5), and I am grateful to Andres Erbsen for showing me

and convincing me of the easier (free-monads based) solution.

4.1 Abstracting Over Use Cases

In order to be reusable for different use cases, the semantics in Haskell deliberately only specify

how each RISC-V instruction is defined in terms of a small number of primitives (listed in Figure 4.1)

such as e.g. reading and writing registers or memory, but do not give semantics to these primitives.

They also do not specify any data type representing the state of a RISC-V machine, instead only

specifying how a RISC-V instruction is turned into a sequence of such primitives. For instance, the

store-word instruction Sw is turned into a sequence of the four primitives getRegister, translate

(performing virtual-to-physical address translation, which, up to now, is just the identity function

in Coq), getRegister, and storeWord, as shown in Figure 4.2.

To abstract over the kinds of effects that the primitives can have, monads [Wadler, 1992] are

used, and tomake that abstraction explicit, a typeclass [Wadler and Blott, 1989] is used, as indicated

by {̀Monad M} in Figure 4.1.

Moreover, another typeclass {̀MachineWidth t} is used to indicate that t is an integer type that

has all the operations that a RISC-V ALU (arithmetic and logic unit) of a processor needs, while

keeping its bitwidth unspecified, so that the specification can later be instantiated to either 32-bit

or 64-bit integers.

4.2 Translating Haskell to Coq

The goal of the formal RISC-V specification in Haskell is to provide a machine-readable reference

specification that can be shared by many different use cases, so that the specification does not need

to be rewritten for each new use case. Therefore, we want to generate automatically as much of

the Coq specification as possible from the Haskell specification.

Using hs-to-coq [Breitner et al., 2018], we can translate the Haskell specification to Coq, re-

placing designated Haskell library functions with corresponding Coq library functions. Since hs-

to-coq was designed to model Haskell semantics in Coq as faithfully as possible, it ships with

handwritten and auto-generated translations of Haskell’s standard-library files, and by default

they are referenced by the Coq files produced by hs-to-coq. However, for this project, we were

not seeking a faithful reproduction of Haskell semantics in Coq but rather an idiomatic RISC-V

72

Inductive PrivMode: Set := User | Supervisor | Machine.

Inductive SourceType: Set := VirtualMemory | Fetch | Execute.

Class RiscvProgram{M}{t}ˋ{Monad M}ˋ{MachineWidth t} := mkRiscvProgram {
getRegister: Register → M t;
setRegister: Register → t → M unit;

loadByte : SourceType → t → M w8;
loadHalf : SourceType → t → M w16;
loadWord : SourceType → t → M w32;
loadDouble : SourceType → t → M w64;

storeByte : SourceType → t → w8 → M unit;
storeHalf : SourceType → t → w16 → M unit;
storeWord : SourceType → t → w32 → M unit;
storeDouble : SourceType → t → w64 → M unit;

makeReservation : t → M unit;
clearReservation : t → M unit;
checkReservation : t → M bool;

getCSRField : CSRField → M MachineInt;
setCSRField : CSRField → MachineInt → M unit;

getPC: M t;
setPC: t → M unit;
getPrivMode: M PrivMode;
setPrivMode: PrivMode → M unit;
fence: MachineInt → MachineInt → M unit;

endCycleNormal: M unit;
endCycleEarly: forall A, M A;

}.

Figure 4.1: The primitives, hand-translated to Coq

73

match instr with
| Sw rs1 rs2 simm12 ⇒

a ← getRegister rs1;
addr ← translate Store 4 (add a simm12);
x ← getRegister rs2;
storeWord Execute addr (regToInt32 x)

| ...
end

Figure 4.2: Semantics of the store-word instruction

specification in Coq. Therefore, we used hs-to-coq’s edit files feature, which allows one to provide

renaming and rewriting patterns to be applied during the translation, so that we could map all

Haskell standard-library references to reasonably close Coq equivalents and obtain an idiomatic,

Haskell-independent Coq specification. We used hs-to-coq to translate the files specifying instruc-

tion execution, the instruction decoder, as well as the CSR-file specification, while we manually

wrote remaining files like utility definitions, the definition of the RiscvMachine typeclass, and

proof-specific files.

4.3 Typeclass Instances for Interactive Theorem Proving

In order to prove a compiler or processor correct against these semantics, we need to give precise

semantics to the primitives, and we do so by fixing an explicit data type representing the state of a

RISC-Vmachine, and implementing the primitives for this state type. We have both a deterministic

implementation which allows us to run small RISC-V programs in Coq, as well as a nondetermin-

istic implementation that can read nondeterministically chosen input through MMIO that we use

for proofs. For instance, here is the implementation of the getRegister primitive:

getRegister reg :=

if Z.eq_dec reg Register0 then Return (ZToReg 0) else

if (0 <? reg) && (reg <? 32) then

mach ← get;

match map.get mach.(getRegs) reg with

| Some v ⇒ Return v

| None ⇒ Return (word.of_Z 0)

end

else fail-hard

74

Moreover, we define that there is no virtual memory, and that the physical memory is sequen-

tially consistent. That is, it can be modeled as a partial map from addresses to bytes, and each

write to a valid address is immediately visible to subsequent reads. However, since we want to

allow pipelined processors, which could execute a store to an address containing an instruction

that is already in the pipeline, we introduce the restriction that only addresses that have never

been written to since the last fence instruction may be fetched.

In the following, we describe different possible instantiations of the typeclass in Figure 4.1.

4.3.1 Simulator in Coq

Statemonad In Coq, the simplest-possible instantiation of themonad is p := State MachineState,

where State is the state monad defined as State(S A: Type) := S → (A * S), and MachineState

is a record containing the values of the processor’s registers, the program counter, the memory, the

CSR file, and the current privilege level. This instantiation can be used to obtain a deterministic

RISC-V simulator.

Statemonadwith failure An arguably simplermonad instantiation is p := OState MachineState,

where OState(S A: Type) := S → (option A) * S uses a None answer to indicate that a failure

occurred. Its Bind and Return operations are implemented as

Bind A B (m: OState S A) (f: A → OState S B) :=

fun (s: S) ⇒ match m s with (Some a, s') ⇒ f a s' | (None, s') ⇒ (None, s') end;

Return A (a: A) := fun (s: S) ⇒ (Some a, s)

and an unrecoverable (hard) failure can be implemented as

fail-hard S A: OState S A := fun (s: S) ⇒ (None, s)

For compiler-correctness proofs, the always-failing function fail-hard can be used to indicate

that a situation occurred that the compiler is supposed to avoid, e.g. memory access at an invalid

address, and a compiler-correctness proof then states that all valid source programs are translated

to RISC-V programs that never fail.

Moreover, if the compiler has been designed to emit code that does not use certain features, the

RISC-V specification can be simplified by implementing the primitives of Figure 4.1 used by these

features as just fail-hard. For instance, the Bedrock2 compiler (chapter 3) emits code that does not

depend on the CSRs, does not use floating-point operations or atomics, and assumes that there is

no virtual memory and that the code always runs at the MachineMode privilege level. Therefore, the

75

monad instantiation used to specify its correctness implements the primitives makeReservation,

checkReservation, clearReservation, getCSRField, as well as unsafeSetCSRField, getPrivMode,

setPrivMode as just fail-hard (while the TLB- and floating-point-related methods were omitted

altogether in the translation from Haskell to Coq).

4.3.2 Adding Instruction Counters

In a separate project (unpublished at the time of writing) building on top of the compiler mentioned

above, the MachineState record was extended to include counters for the number of executed in-

structions, number of memory accesses, and number of jumps, and proofs about how the compiler

preserves these cost metrics were written, allowing one to calculate loose (but formally proven)

upper bounds on the execution time of RISC-V programs.

4.3.3 Nondeterminism

The first way that we implemented to add nondeterminism is to use the nondeterministic option

state monad, OStateND S A := S → option (A * S) → Prop, where the option’s None construc-

tor is used to indicate failure, and option (A * S) → Prop can be thought of as the set of all

possible outcomes. Its Bind and Return operations are implemented as

Bind A B (m: OStateND S A)(f : A → OStateND S B) := fun (s : S) (obs: option (B * S)) ⇒
(m s None ∧ obs = None) ∨ (∃ a s', m s (Some (a, s')) ∧ f a s' obs);

Return A (a : A) := fun (s : S) (oas: option (A * S)) ⇒ oas = Some (a, s)

Why not monad transformers? We use monad transformers [Liang et al., 1995] to add logging

or early returns in Haskell, but they do not work to add nondeterminism as an additional feature

on top of an existing instance, because in order to obtain the right type for OStateND, one has to

start the composition with the nondeterminism monad, rather than adding nondeterminism at the

end of the monad-transformer composition chain, as would be required to reuse code written for

OState in code for OStateND. Moreover, since this code serves as a specification, it should be easy to

audit and understand, and we found that the definitions of Bind and Return above are much easier

to digest than the composition of several monad transformers, where certain composition orders

can result in unintended semantics.

76

4.3.4 Runtime Input

Once we have nondeterminism, we can use it to model memory-mapped I/O (MMIO). For instance,

in the implementation of the loadWord primitive, if the address is not a physical memory address,

we delegate to the following helper function:

mmio_load32 addr: OStateND S int32 := fun s oas ⇒
(isMMIOAddr addr ∧ ∃ v: int32, oas = Some (v, (appendLog (mmioLoadEvent addr v) s))) ∨
(∼isMMIOAddr addr ∧ oas = None)

It can be read as a function that for each current state s returns a proposition that indicates whether

an outcome oas (of type option (int32 * MachineState)) is in the set of possible outcomes, dis-

tinguishing two cases based on whether the address lies in the address range reserved for MMIO.

We also augment MachineState with a log to which we append an MMIO event on each load and

store that falls into the MMIO address range.

Proofs of a compiler targeting this specification have to show that all states in the outcome set

given by mmio_load32 satisfy the compiler’s correctness guarantees (such as being related to a state

of the source-language execution), so the body of mmio_load32 will appear on the left-hand side of

an implication, so the existentially quantified v becomes universally quantified, and as expected,

the compiler proof must establish a guarantee for all possible read values v.

4.3.5 Nondeterminism by Means of Weakest Preconditions

The Bedrock2 compiler using our RISC-V specification requires RISC-V semantics that given an

initial state s, a monadic computation m corresponding to the execution of a sequence of primitives

from Figure 4.1, and a desired postcondition, returns the weakest precondition that must hold in

order for the postcondition to hold. Therefore, it seems that we need the following bridge definition

that tells when a monadic OStateND computation satisfies a postcondition:

Definition mcomp_sat{S A: Type}(m: OStateND S A)(s: S)(post: A → S → Prop): Prop :=

forall (o: option (A * S)), m s o → exists a s', o = Some (a, s') ∧ post a s'.

For an example relating this definition to the previous subsection, m could be instantiated with

mmio_load32 addr, and post could be instantiated with the claim that the final state is related to a

state of the source-language execution.

When instantiating mwith a monadic computation involving many Binds, unfolding mcomp_sat

and all Binds quickly leads to huge formulas with one existential for each intermediate state and an-

swer. For instance, each of the three semicolons in Figure 4.2 stands for a monadic Bind that unfolds

77

to a disjunction, two conjunctions, and an existential, as per the definition of Bind in section 4.3.3.

We found these formulas to be larger than what human brains can deal with productively.

The solution was to treat mcomp_sat and Bind as opaque and to prove weakest-precondition-

style rules for each primitive of Figure 4.1, using only these rules in the compiler-correctness proof,

so that the large formulas were confined to just the proofs of these rules. However, when we

proved a processor in the Coq-embedded hardware-description language Kami [Choi et al., 2017]

against this RISC-V specification, the same formula-explosion problem struck again, but this time,

on the other (left-hand) side of the implication. Inversion rules for mcomp_sat of primitives, dual to

the weakest-precondition-style rules mentioned above, might have been a way to go, but, as my

colleague Andres Erbsen pointed out, it is simpler (both for the compiler and the processor) to use

a typeclass instantiation that does not use OStateND and is more suitable for weakest-precondition

generation, namely a freemonad. To fix the problem, it seems desirable to define mcomp_sat directly

for each primitive (as opposed to first defining each primitive in terms of the cumbersome OStateND,

and then using one generic definition to go from OStateND to postconditions). We can do so using a

different instantiation of our RiscvProgram typeclass that materializes monadic computations into

an Inductivewith a constructor for each primitive from Figure 4.1, with an alternative definition of

mcomp_sat that gives the weakest-precondition interpretation of this syntax. This monad is similar

to freer monads [Kiselyov and Ishii, 2015] and interaction trees [Xia et al., 2019].

The crucial difference between OStateND and the freer-monad interpreter is that the former

creates an existential for the intermediate state and answer of each Bind, whereas the latter works

similarly to a continuation-passing-style interpreter and just passes updated states to the right-

hand sides of the Binds, leading to considerably simpler formulas. For comparison, the mmio_load32

helper function now looks as follows:

mmio_load32 addr := fun s post ⇒
isMMIOAddr addr ∧ ∀ v: int32, post v (appendLog (mmioLoadEvent addr v) s)

Note how, contrary to OStateND, no case for failure is needed, and the value v being read is already

universally quantified, rather than existentially quantified on the left-hand side of the implication

of mcomp_sat, and if more code follows after this snippet, it will be put into post and thus be invoked

with the updated state (appendLog (mmioLoadEvent addr v) s), with no intermediate existential.

78

Chapter 5

Live Verification1

We show that an interactive proof assistant with an extensible parser and a proof goal display (such

as e.g. Coq) can be turned into a live verification tool, that is, a tool that enables programmers to

verify their code as they write it in real-time. After each line of code that the programmer writes,

the tool tells the programmer whether it was able to prove absence of undefined behavior so far,

and it displays a concise representation of the symbolic state of the program right after the added

line. The user can then either write the next line of code, or if needed or desired, write a specially

marked comment that provides hints on how to solve side conditions or on how to represent the

symbolic state more nicely. Once the programmer has finished writing the program, it is already

verified with a mathematical correctness proof.

Other tools providing real-time feedback already exist, but ours is the first to combine all the

three benefits shown in the Venn diagram: Like Dafny [Leino andWüstholz, 2014] and VeriFast [Ja-

cobs et al., 2011], our tool does not require any recompilation or restarting on source code modifi-

cations like VST [Cao et al., 2018] does; and like in VST, the proofs are checked by a small, trusted

kernel, so that the implementation of the tool (except for the kernel) need not be trusted. Moreover,

our tool uses the proof assistant’s goal display to show a concise summary of the current symbolic

state, which is missing in Dafny and can only be achieved by querying the prover with user-stated

assertions, to check which ones are provable.

1
This chapter of the dissertation contains text copied and adapted from the PLDI’24 paper I co-authored with Viktor

Fukala and Adam Chlipala [Gruetter et al., 2024b].

79

LiveVerif

live updates on
each source

program
modification

concisely displays
everything it knows

(symbolic state)

checked by small,
trusted kernel

VST

VeriFastDafny

For the proof assistant, we use Coq, but it seems possible to do the same in other interactive

proof assistants such as e.g. Lean or Isabelle as well; and as the source language, we use a subset

of C (Bedrock2), but here too, the approach should be applicable to other source languages as well.

5.1 Introduction

Writing proofs about software can be a repetitive task, but fortunately, like many repetitive tasks,

it can be automated by writing programs that perform it. But often, it is hard to find the right level

of automation: One might think that the more automation, the better, but the more automated a

prover is, the more it is at risk of going down a wrong route in its proof search and wasting time

on proof steps that a human could easily recognize as useless. The reason is that, for a typical

nontrivial program, the programmer has some (potentially domain-specific) insight about its cor-

rectness and about what strategies are promising to try, but the verification tool might not have

this knowledge. An important question is therefore (a) how users can convey insight to the veri-

fier. Equally important, but often neglected, is the opposite direction, i.e. (b) how the verifier can

convey everything it knows to the user. This feature can be useful in two ways: If, while the user

is writing a program, the verifier constantly provides a concise summary of everything it knows to

be true at the current cursor position (also known as a symbolic state), this summary can help the

user decide whether the program is correct up to that point, and it can hint at what the right next

command in the program might be. And if the verifier fails to verify that an instruction is safe (for

example, that an array access is within bounds), by looking at this summary of everything that the

verifier knows, the user can guess more quickly why the verifier failed.

80

Our answer to (a) is to use Coq’s tactic language Ltac both to implement the verifier and as the

language in which users express their domain-specific insights, which leads to smooth cooperation

between the two; and our answer to (b) is to use Coq’s proof-goal display (which consists of a list

of hypotheses that can be assumed and a conclusion that has to be proven) to display the current

symbolic state of the program that the user is writing.

We start with some “clever tricks” to allow single source files to be accepted as legal code in

both Coq and C, where interactive proof scripts appear amidst lines of normal C code. Then we add

features that take advantage of the proof assistant, providing snapshots of “just right” complexity,

describing what the framework inferred about all possible program states at particular code points.

Along the way, we develop ideas that may mitigate some of the classic usability challenges of

verification with Hoare logics, like the need to invent loop invariants out of whole cloth.

More specifically, we make the following contributions:

• We present a prototype of a framework that supports symbolic live debugging of (a subset of)

C. It runs entirely within the Coq proof assistant and produces ASTs of the functions’ source

code as objects in Coq, with a correctness lemma for each function. Our tool’s correctness

need not be trusted, because it produces proofs that are verified by Coq’s kernel. The cor-

rectness lemmas are expressed in terms of Bedrock2’s source-language semantics [Erbsen

et al., 2021], so our programs can be compiled with Bedrock2’s verified RISC-V compiler.

• Most software-verification tools require users to provide loop invariants, which can become

quite long and tedious to write down. We present a way to express a loop invariant as a

diff from the inferred symbolic state at the beginning of the loop (section 5.3.1.7 and sec-

tion 5.4.4). Using some tactics, users can generalize and/or strengthen the symbolic state,

and our framework can then use this modified symbolic state as the loop invariant. So the

user still needs to provide the insight that leads to a suitable loop invariant, but it is not

necessary to spell out the whole loop invariant. This solution potentially leads to an eas-

ier, more intuitive, and more enjoyable user experience and to proofs that are more robust

against code changes, because diffs (edits) tend to be smaller than whole invariants.

• We argue that proof automation should optimize the user experience for failing proofs (the

default case in a proof developer’s day-to-day work) rather than for proofs where every-

thing works, and we describe three principles that emerge from this focus (section 5.4.8),

including centering automation of side-condition solving around the notion of safe steps

(section 5.4.8.3), i.e. proof steps that do not turn provable goals into unprovable goals. We

provide users with means to register domain-specific proof steps, enabling proofs that rely

on backtracking only very locally and thus are both automated and easy to debug at the same

81

time.

• If one is willing to trust our tool’s notation-based parser, our polyglot Coq source files can

also be viewed as C files and compiled with GCC, or if one is willing to trust Bedrock2’s C

pretty-printer, one can pretty-print the ASTs to C and compile with GCC (section 5.3.2).

• We developed and verified a small but promising set of functions (section 5.6) in our frame-

work.

5.1.1 A First Glance At an Example

Figure 5.1 shows an example of a verified memset function. The file is a Coq file, but if we prefix it

with an opening C comment /*, it becomes a C file. Lines 15 to 26 look like C code but are in fact

just notations for proof tactics that gradually build the abstract syntax tree (AST) of the function,

along with its correctness proof. The proof is completely automated, except for 5 lines of tactic

code (lines 17-21, shown in Figure 5.4c) that express the desired loop invariant as a diff from the

symbolic state before the loop. We will discuss this example in more detail in section 5.3.1, but we

first provide some background in section 5.2.

5.2 Background

This section provides some background to make the text accessible to readers without prior knowl-

edge of proof assistants, Coq, or program verification inside proof assistants. For each subsection,

it should be safe to decide whether to skip it based on its title.

5.2.1 Weakest-Precondition Generators

A weakest-precondition generator wpgen takes a command 𝑐 and a postcondition 𝑃 (an assertion

over the final program state) and returns the weakest precondition that the initial state must satisfy

in order for the postcondition to hold after 𝑐 is executed. For example, the cases for the assignment

and sequencing commands of a wpgen for a simple imperative language, where program states 𝑠

are just partial mappings from variable names to values, could be defined as follows:

wpgen (𝑥 := 𝑒) 𝑃 := 𝜆𝑠. ∃𝑣 . eval_expr 𝑠 𝑒 𝑣 ∧ 𝑃 𝑠 [𝑥 := 𝑣]
wpgen (𝑐1; 𝑐2) 𝑃 := wpgen 𝑐1 (wpgen 𝑐2 𝑃)

The relation eval_expr 𝑠 𝑒 𝑣 (whose definition we omit) says that evaluating expression 𝑒 in

state 𝑠 results in value 𝑣 . It is a relation rather than a function because it is partial: If 𝑒 contains a

82

1 (* -*- eval: (load-file "../LiveVerif/live_verif_setup.el"); -*- *)
2 Require Import LiveVerif.LiveVerifLib.
3 Load LiveVerif.
4 #[export] Instance spec_of_memset: fnspec := .**/
5

6 void memset(uintptr_t a, uintptr_t b, uintptr_t n) /**#
7 ghost_args := bs (R: mem → Prop);
8 requires t m := <{ * array (uint 8) \[n] bs a
9 * R }> m ∧
10 \[b] < 2 ^ 8;
11 ensures t' m' := t' = t ∧
12 <{ * array (uint 8) \[n] (List.repeatz \[b] \[n]) a
13 * R }> m' #**/ /**.
14 Derive memset SuchThat (fun_correct! memset) As memset_ok. .**/
15 { /**. .**/
16 uintptr_t i = 0; /**.···.**/
22 while (i < n) /* decreases (n ^- i) */ { /**. .**/
23 store8(a + i, b); /**. .**/
24 i = i + 1; /**. .**/
25 } /**. .**/
26 } /**. Qed.
27 End LiveVerif. Comments .**/ //.

Figure 5.1: memset example, as displayed in Emacs, with lines 5 of Ltac (lines 17-21) folded away

into ···

83

variable that is not in 𝑠 , no 𝑣 can be found.

If we evaluate wpgen on a sample program and postcondition using call-by-value evaluation

order, we effectively step through the program backwards, propagating an ever-growing postcon-

dition through the program backwards:

wpgen (𝑏 := 2 ∗ 𝑎; 𝑐 := 𝑏/2) (𝜆𝑠. ∃𝑟 . (𝑐, 𝑟) ∈ 𝑠 ∧ (𝑎, 𝑟) ∈ 𝑠)
= wpgen (𝑏 := 2 ∗ 𝑎) (wpgen (𝑐 := 𝑏/2) (𝜆𝑠. ∃𝑟 . (𝑐, 𝑟) ∈ 𝑠 ∧ (𝑎, 𝑟) ∈ 𝑠))
= wpgen (𝑏 := 2 ∗ 𝑎) (𝜆𝑠. ∃𝑣 . eval_expr 𝑠 (𝑏/2) 𝑣 ∧ ∃𝑟 . (𝑐, 𝑟) ∈ 𝑠 [𝑐 := 𝑣] ∧ (𝑎, 𝑟) ∈ 𝑠 [𝑐 := 𝑣])
= 𝜆𝑠. ∃𝑣0. eval_expr 𝑠 (2 ∗ 𝑎) 𝑣0 ∧ ∃𝑣 . eval_expr 𝑠 [𝑏 := 𝑣0] (𝑏/2) 𝑣 ∧
∃𝑟 . (𝑐, 𝑟) ∈ 𝑠 [𝑏 := 𝑣0] [𝑐 := 𝑣] ∧ (𝑎, 𝑟) ∈ 𝑠 [𝑏 := 𝑣0] [𝑐 := 𝑣]

At the end (and after also unfolding the definition of eval_expr that we omit here), this process

results in a purely logical formula over the initial state that represents the weakest precondition

that needs to hold in order for the postcondition (𝜆𝑠. ∃𝑟 . (𝑐, 𝑟) ∈ 𝑠 ∧ (𝑎, 𝑟) ∈ 𝑠) to hold after

executing the program snippet.

A simpler precondition for this program snippet that a user might write down as a specification

would be 𝜆𝑠. ∃𝑥 . 𝑠 = {(𝑎, 𝑥)}, and using an automated or interactive prover, we can prove that

it implies the computed weakest precondition, thus obtaining a proof that all executions of this

snippet starting from a state satisfying the precondition will satisfy the postcondition.

5.2.2 Forward Symbolic Execution Using aWeakest-Precondition Generator

According to the viewpoint in section 5.2.1, weakest preconditions are backwards-oriented: One

steps through the program backwards, gradually transforming the postcondition until the weakest

precondition of the whole program is obtained.

However, this viewpoint implicitly assumes that the weakest-precondition generator is exe-

cuted in standard call-by-value evaluation order.

So here is an insight that is considered folklore in communities around the Iris Proof Mode

[Krebbers et al., 2017] and Bedrock2, but might be less well-known in other communities:

By evaluating a weakest-precondition generator in normal-order evaluation (i.e. left-to-right), one

can symbolically evaluate a program in forward direction.

We will illustrate with the same example as in the previous section, but to make it look more

intuitive, we change the argument order ofwpgen fromwpgen 𝑐 𝑃 𝑠 towpgen 𝑐 𝑠 𝑃 , so that the initial

state 𝑠 , which comes first in time before the postcondition 𝑃 , also comes first in the argument order.

If we encounter eval_expr occurrences, we will simplify them on the fly, and wewill also instan-

84

tiate all the existentials that we encounter, since they are all uniquely determined and only serve

to express the partiality of map lookups. We mark existential-instantiation steps with a backwards

implication⇐.

So, by simplifying a wpgen formula in left-to-right evaluation order, we can prove that a pro-

gram satisfies a postcondition, and the proof steps correspond to a forward symbolic execution of

the program:

wpgen {(𝑎, 𝑥)} (𝑏 := 2 ∗ 𝑎; 𝑐 := 𝑏/2) (𝜆𝑠. ∃𝑟 . (𝑐, 𝑟) ∈ 𝑠 ∧ (𝑎, 𝑟) ∈ 𝑠)
= wpgen {(𝑎, 𝑥)} (𝑏 := 2 ∗ 𝑎) (𝜆𝑠′.wpgen (𝑐 := 𝑏/2) 𝑠′ (𝜆𝑠. ∃𝑟 . (𝑐, 𝑟) ∈ 𝑠 ∧ (𝑎, 𝑟) ∈ 𝑠))
= ∃𝑣 . eval_expr {(𝑎, 𝑥)} (2 ∗ 𝑎) 𝑣

∧ wpgen (𝑐 := 𝑏/2) ({(𝑎, 𝑥)}[𝑏 := 𝑣]) (𝜆𝑠. ∃𝑟 . (𝑐, 𝑟) ∈ 𝑠 ∧ (𝑎, 𝑟) ∈ 𝑠)
⇐ wpgen (𝑐 := 𝑏/2) {(𝑎, 𝑥), (𝑏, 2 ∗ 𝑥)} (𝜆𝑠. ∃𝑟 . (𝑐, 𝑟) ∈ 𝑠 ∧ (𝑎, 𝑟) ∈ 𝑠)
= ∃𝑣 . eval_expr {(𝑎, 𝑥), (𝑏, 2 ∗ 𝑥)} (𝑏/2) 𝑣

∧ (𝜆𝑠. ∃𝑟 . (𝑐, 𝑟) ∈ 𝑠 ∧ (𝑎, 𝑟) ∈ 𝑠) ({(𝑎, 𝑥), (𝑏, 2 ∗ 𝑥)}[𝑐 := 𝑣/2])
⇐ ∃𝑟 . (𝑐, 𝑟) ∈ {(𝑎, 𝑥), (𝑏, 2 ∗ 𝑥), (𝑐, 2 ∗ 𝑥/2)} ∧ (𝑎, 𝑟) ∈ {(𝑎, 𝑥), (𝑏, 2 ∗ 𝑥), (𝑐, 2 ∗ 𝑥/2)}
= ∃𝑟 . 𝑟 = 2 ∗ 𝑥/2 ∧ 𝑟 = 𝑥

⇐ ⊤

Note how the symbolic state, i.e. the map expression between {}, evolves from line to line

exactly as it would in a forward symbolic evaluation of the program.

5.2.3 Using WP Rules instead of a WP Generator

Instead of using a weakest-precondition generator wpgenwhose definition we selectively unfold to

step through a program, we can also use an equivalent
2
weakest-precondition judgment wp (defined

in terms of the operational semantics of the object language), prove rules for each object-language

construct, and apply these rules in order to step through a program.

So, instead of using wpgen definitions like those in section 5.2.1, we can also use rules like the

following:

∀ 𝑥 𝑒 𝑠 𝑃 𝑣 . eval_expr 𝑠 𝑒 𝑣 ∧ 𝑃 𝑠 [𝑥 := 𝑣] ⇒ wp (𝑥 := 𝑒) 𝑠 𝑃
∀ 𝑐1 𝑐2 𝑠 𝑃 . wp 𝑐1 𝑠 (𝜆𝑠′. wp 𝑐2 𝑠′ 𝑃) ⇒ wp (𝑐1; 𝑐2) 𝑠 𝑃

2
Note that we avoid some complications by considering only object languages without lambdas and by using a

metalanguage (logic) that supports quantification over predicates. In particular, if program variables in the symbolic

state could not only contain simple values like integers or Booleans but also lambdas, defining wpgen by structural

recursion over the program syntax would not be directly possible anymore, and in the case of while loops, we rely on

the ability to quantify existentially over an invariant:

wpgen 𝑠 (while 𝑒 do 𝑐) 𝑃 := ∃𝐼 . 𝐼 𝑠 ∧∀𝑠′ . 𝐼 𝑠′ ⇒ ∃𝑏. eval_expr 𝑠′ 𝑒 𝑏 ∧ (𝑏 = true⇒ wpgen 𝑠′ 𝑐 𝐼) ∧ (𝑏 = false⇒ 𝑃 𝑠′)

85

Using such rules, we can perform the same kind of proofs as described in section 5.2.2 (with the

minor difference that all = signs now become⇐). From a logical point of view, selectively unfold-

ing wpgen left-to-right is equivalent to repeatedly applying wp rules to the leftmost occurrence of

wp, and the only relevant differences are Coq-specific proof ergonomics and performance consid-

erations that we defer to section 5.5.8.3.

5.2.4 Editing Coq Proofs: Proof Goals and the Proof Cursor

The central notion for interactive proof development in Coq is that of a proof goal. On paper, we

write proof goals as Γ ⊢ 𝑃 , where Γ is a list of variables and hypotheses that can be assumed, and

𝑃 is the conclusion to be proven. In the actual Coq implementation, each variable and hypothesis

is printed on a separate line, and the ⊢ is printed as a horizontal line (for example, see Figure 5.4a

& b).

When a user wants to develop a proof of a statement 𝑃 in Coq, Coq starts by showing the proof

goal ⊢ 𝑃 . The user then applies a series of tactics. Each tactic either completely solves a proof goal

or transforms it into one or several new proof goals. There are tactics for modifying the conclusion

(backwards reasoning) as well as tactics for modifying the hypotheses (forward reasoning), and all

their operations are justified by previously proven lemmas. For instance, given a goal of the form

𝐻 : 𝐴 ∧ 𝐵 ⊢ 𝐶 ∧ 𝐷 , the tactic destruct H would transform it into 𝐻1 : 𝐴,𝐻2 : 𝐵 ⊢ 𝐶 ∧ 𝐷 , whereas
the split tactic would transform it into two new subgoals, 𝐻 : 𝐴 ∧ 𝐵 ⊢ 𝐶 and 𝐻 : 𝐴 ∧ 𝐵 ⊢ 𝐷 .

Under the hood, this process generates a proof term. Once there are no more proof goals left,

the user can conclude the proof with the Qed command, and Coq’s small, trusted kernel checks

that this proof term is indeed a proof of the original statement. Because of this rechecking by the

kernel, none of the goal-management code or the tactics code needs to be trusted in order to trust

the correctness of the proven statement, which leads to highly trustworthy proofs.

ProofGeneral is an Emacs extension for developing Coq proofs. For each Coq file being edited,

it shows three windows: a window for the file itself, a window for the current proof goals, and a

window to display error messages. In addition to the regular text-editing cursor, the file window

also has a proof cursor that can be moved forward and backward using separate key bindings (or

GUI buttons), and the proof-goal window always displays the proof goals that remain open at the

current position of the proof cursor. If a proof contains an error, ProofGeneral ensures that the

proof cursor can never be advanced past that error.

Wewill see in section 5.3.1 howwe can repurpose the proof-goal window to serve as a debugger

window displaying the symbolic values of all variables and memory, and how the proof cursor can

86

be seen as the indicator of a debugger pointing to the next instruction to be executed.

5.2.5 Evars in Coq: Lazily Instantiated Existential Variables

While writing proofs in Coq, it is sometimes desirable to delay choosing some term until a later

point where the updated proof goal makes it more obvious what the right choice for that term is.

For example, if we have the proof goal 𝑎 : ℤ, 𝑏 : ℤ, 𝑐 : ℤ, 𝐻1 : 𝑎 < 𝑏, 𝐻2 : 𝑐 > 𝑏 ⊢ 𝑎 < 𝑐 and want

to apply the lemma Z.lt_trans, which says ∀ 𝑛 𝑚 𝑝. 𝑛 < 𝑚 ⇒𝑚 < 𝑝 ⇒ 𝑛 < 𝑝 , Coq can infer (by

unifying the lemma’s conclusion with the goal’s conclusion) that 𝑛 has to be instantiated to 𝑎 and

𝑝 to 𝑐 , but it is not immediately clear what term𝑚 should be instantiated with. So either the user

has to provide it explicitly by running the tactic apply Z.lt_trans with (𝑚 := 𝑏), which results

in two subgoals with the same hypotheses as the original goal and conclusions 𝑎 < 𝑏 and 𝑏 < 𝑐

respectively; or the user can delay the choice of 𝑚 by running eapply Z.lt_trans. The eapply

tactic is a variant of the apply tactic that creates so-called evars (short for existential variables) for

terms that cannot be determined yet. On this example, it results in two subgoals with conclusions

𝑎 < ?𝑚 and ?𝑚 < 𝑐 , respectively, where the question mark is used to mark 𝑚 as an evar, i.e. as

some hole that will be filled in later. Note that the two occurrences of ?𝑚 in the two subgoals are

linked: As soon as ?𝑚 is instantiated to some term in one goal, it is also instantiated to the same

term in the other goal. To continue the example, one could now run the eassumption tactic on the

first goal, which applies any assumption from the list of hypotheses that matches the conclusion.

The e at the beginning of the tactic’s name means that it can instantiate evars in order to unify a

hypothesis with the conclusion, so it will pick 𝐻1 and instantiate ?𝑚 to 𝑏.

5.2.6 A Use Case of Evars: Deriving a Definition Based on its Proof

Coq’s Derive command can be used to create a definition and a proof about it at the same time. For

example, if we want to define a list myList such that it contains (at least) 1 and 2 as its elements,

we can start with the the command

Derive myList SuchThat (In 1 myList ∧ In 2 myList) As my_property.

It starts the definition of a list named myList, along with a lemma named my_property. Note

that the definition of myList is not yet given at this point and will only be filled in gradually while

writing the proof. This command creates an evar ?myList for the definition being made and opens

the proof goal ⊢ In 1 ?myList ∧ In 2 ?myList. Using the split tactic turns it into two goals,

⊢ In 1 ?myList and ⊢ In 2 ?myList. Given the lemma in_eq which says

87

∀ (A : Type) (a : A) (l : list A), In a (cons a l)

we can run eapply in_eq on the first subgoal, which unifies the conclusion of that lemma with

In 1 ?myList. This step partially instantiates the evar ?myList, namely to the term (cons 1 ?l),

which in turn contains a new evar ?l, so the second subgoal now becomes ⊢ In 2 (cons 1 ?l).

Then, the proof can be completed by applying in_cons, which says that

∀ (A : Type) (a b : A) (l : list A), In b l ⇒ In b (cons a l)

and leads to ⊢ In 2 ?l and then applying in_singleton:

∀ (A : Type) (x : A), In x (cons x nil)

which instantiates the remaining evar ?l to the singleton list containing just 2.

So, through this series of proof steps, the list myList was defined to be (cons 1 (cons 2 nil))

solely based on its proof, without ever having to spell out this term as a whole.

5.3 Overview: Writing and Compiling a Sample Program

5.3.1 Guided Tour Through the memset Example

This subsection gives an overview of our approach by means of a detailed discussion of the sample

program in Figure 5.1. The sample program contains many notations, and in this section, we are

not yet attempting to explain what exactly each notation unfolds to. Instead, we are just trying to

give an intuitive understanding of their meanings. For reference, a listing of all notations can be

found in section 5.9.

5.3.1.1 Polyglot Source File Can be Read as C or Coq at the Same Time [Lines 1-27]

We use Emacs’ hideshowminor mode to fold 5 lines of proof script into ···. The code in Figure 5.1 is

a Coq file accepted by unmodified Coq 8.17.1 without requiring any plugins
3
. By (ab)using Coq’s

notation system, we can insert program snippets that look like C code. If the file is preceded by

our framework-specific C header and an opening C comment /*, it becomes a C file that can be

compiled with GCC.

3
except some standard plugins that are distributed together with Coq, such as Ltac, Ltac2, and Lia

88

5.3.1.2 Function Signature Using Only One Type [Line 6]

Line 6 contains the function signature in C syntax. Since we only support the subset of C that is also

supported by Bedrock2, all variables have the same type, namely uintptr_t (defined in stdint.h).

According to the standard, that is an unsigned integer type large enough to hold a pointer value,

but we rely on the observation that in practice, compiler implementations define it as 32-bit and

64-bit unsigned int on 32-bit and 64-bit machines, respectively.

5.3.1.3 Specifications Using Separation Logic and ℤ [Lines 7-13]

The C signature is followed by a function specification enclosed in a /**# #**/ comment that

lists ghost arguments, a precondition over the initial event trace t and the initial memory m, and

a postcondition over the final event trace t' and final memory m'. The parts between <{ }> are

separation-logic assertions. We use * symbols as bullet points for lists of separation-logic clauses

to be joined by separating conjunction, so * can also be read as the traditional star operator from

separation logic, just with the additional liberty of allowing a series of separating conjunctions

to start with a superfluous initial *. The array predicate takes as arguments the predicate for its

elements (uint 8), followed by its number of elements, its list of elements, and its start address.

To make our specifications as trustworthy as possible, we need to avoid accidental integer

overflows in the specifications, so we generally use unbounded integers (ℤ) in our specifications

rather than bounded integers (word), except in situations with many bitwise operations and where

integer overflow is the desired outcome. Therefore, we often need to interpret bounded integers

(values that were computed by our programs) as unbounded integers in order to mention them

in specifications. To interpret a word value x as an unsigned ℤ, we use the notation \[x] (which

expands to the word.unsigned function), and there is also a word.signed function (for which we

have not yet invented a notation because we use it less frequently). The reverse direction, coercing

aℤ into a word, does not need to distinguish between signed and unsigned integers, because in both

cases, it simply takes the 32 least significant bits of the unbounded integer’s binary representation

in two’s complement (and a negative number is considered to start with an infinite series of 1s on

the left). We call this coercion word.of_Z and abbreviate it with /[x], but since it drops the more

significant bits, we try to use it as little as possible.

89

5.3.1.4 The Initial Proof Goal [Line 14]

We use Coq’s Derive4 command (section 5.2.6) to start the correctness proof of a function that has

not yet been defined but will be defined at the same time as we write the proof. Note that lines 15

to 26 are actually a proof script, even though they look like C code. The Derive command opens

a proof goal which could be summarized, using the notation from section 5.2.4, as ⊢ 𝑃 (𝑡, 𝑠,𝑚) ⇒
wp (𝑡, 𝑠,𝑚) ?𝑏𝑜𝑑𝑦 𝑄 , where 𝑃 stands for the precondition from lines 8-10,𝑄 stands for the postcon-

dition from lines 11-13, and ?𝑏𝑜𝑑𝑦 is an evar (section 5.2.5) acting as a placeholder for the function

body that is going to be defined. The state triple (𝑡, 𝑠,𝑚) contains an event trace 𝑡 , a partial map-

ping 𝑠 from variable names to values, and a memory 𝑚. The initial 𝑠 contains just the function

arguments, so in this example, it equals map.of_list [|("a", a); ("b", b); ("n", n)|].5

5.3.1.5 C Snippets Acting As Proof-Script Steps [Lines 15-26]

Each C snippet is enclosed between a closing comment .**/ and an opening comment /**. and

is actually just a notation for a tactic. The first proof step, .**/ { /**., introduces the precondition

as hypotheses and performs some setup to start the proof. The datatype used to represent snippets

is shown in Figure 5.2. Note that this datatype is only used by the tactics and does not appear in

the function being defined: There, an AST with a conventional recursive structure is used.

5.3.1.6 Applying Weakest-Precondition Rules [Lines 16-24]

The assignment on line 16 is a notation for a tactic that applies the wp rule for assignment shown

on the in Figure 5.3.
6
It has a built-in sequence command, so applying it to a wp goal whose

command is an evar instantiates that evar and leaves behind a new evar ?rest for the subsequent

commands.

The snippet on line 22 applies the wp-while rule shown in Figure 5.3.
7
It requires an invariant

𝐼𝑛𝑣 , a proof that 𝐼𝑛𝑣 holds for the initial state; a proof that 𝐼𝑛𝑣 implies that evaluating the condition

𝑒 is safe; a proof that if the condition is nonzero (true), running the loop body 𝑐 always leads to a

4
A note for Haskell users: Unlike in Haskell, the Derive keyword in Coq is in no way related to the Instance

keyword. The reason we mark specifications as type-class instances is explained in section 5.5.7.

5
Note that for list literals, we use the notation [|x; y; z|] instead of Coq’s standard notation [x; y; z],

because we want to use bracket notation to index into lists, so the term f [b] would become ambiguous: It could be

the application of function f to the singleton list containing b, or it could be the b-th element of list f. We experimented

with type-based operator overloading (section 5.5.8.2), but it did not seem worth the trouble.

6
The rule that actually gets applied is specially tailored to work well with our proof automation, see section 5.5.2.

7
For simplicity, we show a termination-insensitive variant, but the real lemma also requires a termination argument

and is specially tailored for our proof automation, see section 5.5.2.

90

Inductive assignment_rhs :=
| RCall(fname: string)(args: list expr)
| RExpr(e: expr).

Inductive snippet :=
| SAssign(is_decl: bool)(x: string)(r: assignment_rhs) (* uintptr_t x = r; | x = r; *)
| SVoidCall(fname: string)(args: list expr) (* fname(args); *)
| SStore(sz: access_size)(addr val: expr) (* store[|8|16|32](addr, val); *)
| SIf(cond: expr)(split: bool) (* if (cond) /* split */ { *)
| SElse(startsWithClosingBrace: bool) (* } else { | else { *)
| SWhile(c: expr){Measure: Type}(m: Measure) (* while(c)/* decreases m */ { *)
| SStart (* { *)
| SEnd (* } *)
| SRet(retexpr: expr) (* return e; *)
| SEmpty. (* /* for C comments */ *)

Notation "'while' (e) /* 'decreases' m */ {" :=
(SWhile e m) (in custom snippet at level 0, e custom live_expr, m constr at level 0).

Notation "*/ s /*" := s (s custom snippet at level 100).

(* Standard usage: .**/ snippet /**. *)
Tactic Notation ".*" constr(s) "*" := next_snippet s; run_steps_internal-hook.
(* Debug mode (doesn't run verification steps): .**/ snippet /*?. *)
Tactic Notation ".*" constr(s) "?" := next_snippet s.

Figure 5.2: Datatype to represent C snippets and some of the notations for parsing them

wp-set

eval_expr 𝑠 𝑚 𝑒 𝑣

wp (𝑡, 𝑠 [𝑥 := 𝑣],𝑚) 𝑟𝑒𝑠𝑡 𝑃
wp (𝑡, 𝑠,𝑚) (𝑥 := 𝑒; 𝑟𝑒𝑠𝑡) 𝑃

wp-while

𝐼𝑛𝑣 𝜎

∀𝜎′. 𝐼𝑛𝑣 𝜎′⇒ ∃𝑏.
eval_expr 𝜎′ 𝑒 𝑏 ∧
(𝑏 ≠ 0⇒ wp 𝜎′ 𝑐 𝐼𝑛𝑣) ∧
(𝑏 = 0⇒ wp 𝜎′ 𝑟𝑒𝑠𝑡 𝑃)
wp 𝜎 (while 𝑒 do 𝑐; 𝑟𝑒𝑠𝑡) 𝑃

Figure 5.3: Some weakest-precondition rules

91

state that satisfies 𝐼𝑛𝑣 again; and a proof that if the condition is zero (false), the code after the loop

is correct.

Our framework contains rules for all language constructs, and they are all proven sound with

respect to the semantics of Bedrock2 (expressed in omnisemantics [Charguéraud et al., 2023]).

5.3.1.7 Expressing the Loop Invariant as a Diff from the Current Symbolic State [Lines 17-21

in Figure 5.4c]

The wp-while lemma requires a loop invariant. Automatically inferring loop invariants is a

hard problem, and we do not attempt to solve it. But spelling out loop invariants manually is

also quite cumbersome. Therefore, we use an approach in-between these two extremes, based on

the observation that the loop invariant often looks quite similar to the symbolic state just before

the loop. Instead of requiring that the user spells out the whole invariant, we only require that

the user expresses the insight needed to obtain the right invariant, expressed as a tactic script

(Figure 5.4c) that transforms the symbolic state before the loop (Figure 5.4a) into a generalized

and/or strengthened symbolic state (Figure 5.4b) which our framework thenmechanically packages

into a loop invariant (Figure 5.4d).

5.3.1.8 Heapletwise Separation Logic [Background for Line 23]

It is useful to name each separation-logic clause and to make it available to Ltac’s match command,

which finds hypotheses matching a given pattern. Therefore, instead of using one big separation-

logic clause (P ∗ Q ∗ R) m, we split it into one hypothesis per clause. This strategy requires ex-

plicitly splitting the memory m into a heaplet corresponding to each clause, which takes up some

space in the display of the proof goal, but it can be handled completely automatically and therefore

does not affect the user experience too negatively. This splitting then leads to three new heaplets

m0, m1, m2; an equation saying that their disjoint union equals m, written as m0 */ m1 */ m2 = m;

and three hypotheses P m0, Q m1 and R m2. To make them more easily recognizable as memory hy-

potheses, we use the mi |= Pi notation, which just expands to Pi mi. See for example hypotheses

H0, H1, and D in Figure 5.4a, and compare them to the precondition of the memset function on line 8

in Figure 5.1.

5.3.1.9 Accessing Memory That Is Part of a Bigger Separation-Logic Clause [Line 23]

store8(a + i, b) stores the lowest 8 bits of b to the i-th element of the array at a. According to

the loop invariant, we have the following separation-logic clause:

92

state : currently displaying
... 6 lines of section vars omitted ...
fs : list (string * func)
fs_ok : functions_correct fs ?Goal
Scope0 : ____ FunctionParams ____
a, b, n : word
bs : list Z
R : mem → Prop
Scope1 : ____ FunctionBody ____
t : trace
i : word
m, m0, m1 : mem
H0 : m0 |= array (uint 8) \[n] bs a
H1 : m1 |= R
D : m0 */ m1 = m
Hp1 : \[b] < 2 ^ 8
Def0 : i = /[0]
============================
ready

(a) Symbolic state (proof goal) after processing

the first line of the function body in Figure 5.1

state : currently displaying
... 6 lines of section vars omitted ...
fs : list (string * func)
fs_ok : functions_correct fs ?Goal
Scope0 : ____ FunctionParams ____
a, b, n : word
bs : list Z
R : mem → Prop
Scope1 : ____ FunctionBody ____
t : trace
Scope2 : ____ LoopInvOrPreOrPost ____
i : word
m, m0, m1 : mem
H0 : m0 |= array (uint 8) \[n]

(List.repeatz \[b] \[i] ++ bs[\[i]:]) a
H1 : m1 |= R
D : m0 */ m1 = m
Hp1 : \[b] < 2 ^ 8
============================
ready

(b) Symbolic state (proof goal) after processing

the Ltac code in (c)

17 swap bs with
18 (List.repeatz \[b] \[i] ++ bs[\[i]:])
19 in #(array (uint 8)).
20 loop invariant above i.
21 delete #(i = ??).

(c) Snippet of Ltac code that was folded into ··· in
Figure 5.1. The # notation is used to reference a

hypothesis matching a pattern, instead of using its

autogenerated (and thus subject-to-change) name.

fun (measure : word) (ti : trace)
(mi : mem) (li : locals) ⇒

exists i : word, ands [|
measure = n ^- i; ti = t;
li = map.of_list [|("a", a); ("b", b);

("i", i); ("n", n)|];
seps [|array (uint 8) \[n]

(List.repeatz \[b] \[i]
++ bs[\[i]:]) a; R|] mi;

\[b] < 2 ^ 8|]

(d) Loop invariant automatically built by packaging

everything below __LoopInvOrPreOrPost__ in (b)

Figure 5.4: Loop-invariant definition using a diff script (c) instead of explicitly spelling it out

93

H0 : m0 |= array (uint 8) \[n] (List.repeatz \[b] \[i] ++ bs[\[i]:]) a

However, the wp lemma for the store commands (omitted for space reasons) expects a separation-

logic clause with just one (uint 8) element, so we need to split the array appropriately. Our tactics

take care of this automatically, leading to the following three clauses:

H2 : m0 |= array (uint 8) \[i] (List.repeatz \[b] \[i]) a

H3 : m2 |= uint 8 bs[\[i]] (a ^+ i)

H7 : m4 |= array (uint 8) (\[n] - \[i] - 1) bs[\[i] + 1 :] (a ^+ i ^+ /[1])

The store then replaces bs[\[i]] with b in H3, and since the splitting tactic posed a hypothesis

that acts as a reminder to merge the three clauses back together later, we end up with the following

clause after the store:

H1 : m |= array (uint 8) \[n] (List.repeatz \[b] \[i] ++ [|\[b]|] ++ bs[\[i] + 1 :]) a

5.3.1.10 Proving That the Current Symbolic State Satisfies Expectations [Lines 25 and 26]

The closing brace at the end of the loop body creates a proof that the symbolic state obtained by

executing the loop body satisfies the loop invariant again, and the closing brace at the end of the

function body creates a proof that the final symbolic state satisfies the postcondition given on lines

11-13. In this example, the proofs are found completely automatically, but in more complex exam-

ples, the automation might leave some goals open for the user to prove manually. This completes

our tour of the memset example.

5.3.2 Tradeoffs Between Three Different Ways of Compiling

Finally, after proving our memset function correct, we might also want to compile and run our code.

Table 5.1 compares three different ways of compiling code that was verified in our framework.

The C-parsing notations of our framework expand to Bedrock2 ASTs, defined as a Coq inductive

datatype, so the correctness proofs are statements about these ASTs. The verified Bedrock2 com-

piler consumes the same ASTs and is proven correct against the same semantics as used by our

framework, so when it comes to minimizing the TCB, this is the preferred approach. For better

performance and support of ISAs other than just RISC-V, one can choose to compromise on TCB

minimality: If one trusts our notations to parse C as well as Coq’s implementation of its notation

system, one can feed our Coq files (which are also C files if preceded by our header defining loads

and stores and an opening comment /*) to GCC (and likely also to other C compilers), or if one

94

Feed Coq file to GCC Bedrock2’s

ugly-printer & GCC

Bedrock2 Compiler

Readability of

exported code

OK (see e.g.

Figure 5.1)

Decipherable (many

casts & parentheses)

It is assembly

Instruction-set

architecture support

Everything supported

by GCC

Everything supported

by GCC

Only RISC-V

Performance of

compiled code

Good Good Bad

Additions to trusted

code base

Notations to parse C

into Bedrock2, GCC,

load/store C header

Bedrock2’s

ugly-printer, GCC,

load/store C header

Only the riscv-coq

specification

Table 5.1: Different Ways of Compiling

prefers to trust Bedrock2’s pretty-printer (called ugly-printer by its author), one gets less readable

C code but otherwise similar characteristics.

One might also wonder whether it would make sense to compile our programs with CompCert.

In practice, this would probably work, but we do not have a compatibility proof between Bedrock2

semantics and CompCert C semantics, and such a statement would not be provable because of

differences such as e.g. that comparisons between integers that were obtained by casting pointers

are undefined behavior in CompCert C.

5.4 User Interface

5.4.1 New Separation-Logic Concepts

To better drive separation-logic proof automation and make some expressions more concise, we

introduce a few properties of separation-logic predicates.

5.4.1.1 Predicate Size

Often a separation-logic predicate P occupies some range of memory addresses, and we need to

know the length in bytes of that range. Therefore, we define PredicateSize P to be an alias of

ℤ, mark it as a type class, and register a hint for each predicate, so that we can use type-class

search to find the size of a predicate. The predicate (array elemPred n xs a) can then use an

implicit, automatically inferred argument elemSize of type (PredicateSize elemPred), to state

95

that at address a, we have an array of the n elements in list xs, where the i-th element of xs is

asserted using (elemPred xs[i] (a+i*elemSize)).

5.4.1.2 Support for Adjacent Sep Clauses: sepapp and sepapps

Often, we want to lay out several predicates adjacent to each other.
8
To avoid having to write out

offsets explicitly, we introduce the notion of separating append, written sepapp P1 P2 addr. It takes

two separation-logic predicates P1 and P2 of type word → mem → Prop, where the word stands for

the address at which the predicate begins, and also takes an implicitly inserted argument P1size

of type PredicateSize P1 (which can be found by type-class search as explained above) and an

address addr, and it is defined as the separating conjunction P1 addr ∗ P2 (addr ^+ /[P1size]).

We also define a sepapps predicate that takes a list of predicates, infers their sizes, and lays them

out adjacently.

5.4.1.3 𝒏-Fillable Predicates

We call a predicate 𝑃 𝑛-fillable if for any 𝑛-byte buffer at address 𝑎, there exists a value 𝑣 such

that the predicate 𝑃 𝑣 𝑎 holds. This concept is useful to know whether we can cast the byte buffer

returned by malloc into a predicate 𝑃 .

5.4.2 Defining Record Predicates Using C Syntax

Our framework supports defining separation-logic predicates using C syntax. For example, given

a Coq record type for nodes of singly linked lists, Record node := { data: word; next: word },

we can create a separation-logic predicate called node_t that asserts that at a given address, a

representation of a given node record is found. Using sepapps and some custom notations, we can

define a predicate that looks like a C struct definition (first definition in Figure 5.5). The two other

definitions in that figure express the same predicate but using a notation for sepapps or sepapps

directly, respectively.

5.4.3 IDE Extensions

Our framework can be used in any IDE for Coq. However, there are three very common operations

for which we implemented keyboard shortcuts in 40 lines of Emacs Lisp:

8
So far, we have only considered packed records, so we do not automatically insert spacing to respect alignment

constraints.

96

Definition node_t(r: node):
word → mem → Prop := .**/

typedef struct
__attribute__ ((__packed__)) {

uintptr_t data;
uintptr_t next;

} node_t;
/**.

Definition node_t(r: node): word → mem → Prop :=
<{ + uintptr (data r)

+ uintptr (next r) }>.
Definition node_t(r: node): word → mem → Prop :=
sepapps
(cons (mk_sized_predicate (uintptr (data r)) 4)
(cons (mk_sized_predicate (uintptr (next r)) 4)
nil)).

Figure 5.5: Three equivalent definitions, using different notations

• Showing/hiding of the Ltac block under the cursor (i.e. folding tactics into ···)
• Inserting spaces until the end of line followed by a C-closing/Ltac-opening marker /**. and

then processing the line

• Inserting and processing one step command (section 5.4.8.3)

5.4.4 Expressing a Loop Invariant as a Diff from the Current Symbolic State

Before each loop, the user of our framework must turn the current symbolic state into a shape that

our framework can use as a loop invariant. The example in Figure 5.4 should be helpful to illustrate

the general process that we are going to explain in detail now. All modifications are expressed in

Ltac and are of two kinds:

The first is that the user needs to separate variables and hypotheses that remain unchanged dur-

ing the loop from those that may change during the loop, by using the command loop invariant

above x, where x is the name of a variable or hypothesis. This command adds a LoopInvOrPreOrPost

marker above x to separate unchanged (above) from changing (below) variables and hypotheses.

After adding this marker, one can use Coq’s builtin Ltac commands move x before y and move x

after y to move hypotheses and variables up and down, until each is on the correct side of the

separating marker. The variables below the marker will turn into existentials in the loop invariant,

and the hypotheses will turn into a big conjunction (expressed as ands [|...|]). The variables and

hypotheses above the marker do not appear in the loop invariant, except that the local variables

above the marker are asserted to keep their values throughout the loop, and the hypotheses natu-

rally remain available during the proof of the loop body without requiring further intervention.

The second kind of modification is related to generalizing the state. For instance, a variable i

that equals one particular value before the loopmight need to be generalized to bewithin a range by

prove (0 <= i < n); and by delete #(i = ??), which finds the first hypothesis of shape i = ??

97

and deletes it. Other common modifications of this kind include viewing a list of unprocessed

items as the concatenation of an empty processed list and a remainder of unprocessed items, then

forgetting that the unprocessed and processed list are the empty and whole list, respectively. A

similar example is also in Figure 5.4c, where we replace the list bs of initial garbage data by the

concatenation of repeating \[b] zero times (zero being the initial value of i) and the suffix of bs

starting at i. And finally, it is sometimes also needed to introduce additional variables, so that

a value that happens to be the same in two hypotheses can differ during the loop, which can be

achieved using the pose (a := b) command, and change b with a in H, and finally, clearbody a

to forget that a equals b.

5.4.5 Treating While Loops as Tail-Recursive Calls

Certain loops can be verified more easily by viewing them as tail-recursive functions with pre-

and postconditions parameterized over ghost variables [Tuerk, 2010]. Before each loop iteration,

the precondition must hold, and at the end of the loop body, one has to show that the current

state implies the precondition with smaller ghost variables, and one also has to show that the

postcondition with small ghost variables implies the postcondition with bigger ghost variables.

For instance, when iterating over a data structure, the ghost variables can include a representa-

tion of the data structure and a frame, and the former shrinks with each iteration, while the latter

grows with each iteration, so that we can forget the parts of the memory that are not relevant

anymore.

We implement support for while and do-while loops in this style, using the symbolic state

before the loop, appropriately generalized and strengthened through a diff script by the user, as

a precondition, and the function’s postcondition as the postcondition of the tail-recursive view of

the loop. Since we do not want users to spell out loop postconditions manually, we do not support

yet this tail-recursive view for cases where the code after the loop still needs to access the memory

that was “forgotten” (pushed into the frame) during the loop. In such cases, one would have to

factor the code into two functions or resort to a traditional while loop with just one invariant.

As an example, proving correctness of a strcmp function with a traditional invariant-based loop

would require an invariant like the following:

H2 : m2 |= array (uint 8) (len s1 + 1) (s1 ++ [|0|]) p1_pre

H1 : m1 |= array (uint 8) (len s2 + 1) (s2 ++ [|0|]) p2_pre

H3 : m3 |= R

H : \[p1 ^- p1_pre] <= len s1

98

H0 : \[p2 ^- p2_pre] <= len s2

H6 : \[p1 ^- p1_pre] = \[p2 ^- p2_pre]

H7 : s1[:\[p1 ^- p1_pre]] = s2[:\[p2 ^- p2_pre]]

...where p1 and p2 are pointers pointing somewhere into the middle of the two strings s1 and

s2 being compared, and p1_pre and p2_pre are the original values of p1 and p2 pointing to the

beginnings of the strings. Each loop iteration compares the two characters at p1 and p2 and exits

the loop if they are different.

On the other hand, if we view the same loop as if it were a tail-recursive function, its precon-

dition can become much simpler:

H2 : m2 |= array (uint 8) (len s1 + 1) (s1 ++ [|0|]) p1

H5 : ∼ List.In 0 s1

H1 : m1 |= array (uint 8) (len s2 + 1) (s2 ++ [|0|]) p2

H4 : ∼ List.In 0 s2

H3 : m3 |= R

Each iteration compares the first character of s1 and s2, and if a next iteration is needed, we

forget the two compared characters by moving them from s1 and s2 into the frame R. As the

postcondition, we can reuse the function’s postcondition, generalizing it over the ghost variables

s1, s2, p1, p2, R. Figure 5.6 shows the strcmp function proven in this style, with 32 lines of

uninteresting proof folded into ···. Note that the user needs to provide the initial values of all ghost
variables and somewhere in the omitted proof script also needs to specify the new values of the

ghost variables for the tail-recursive call (i.e. the next iteration).

5.4.6 Variable-Naming Scheme

Our tactics make sure that a program variable named "x" always has its corresponding value bound

to a Coq variable named x. When a variable gets reassigned, the old value is renamed into x', and

x is used for the new value. We use primes instead of Coq’s standard, number-suffix-based fresh-

name generation scheme because if we have program variables called x1 and x2 and ask Coq to

generate a fresh name for x1, it will replace the suffix 1 by the lowest number that results in a fresh

name, so it would become hard to tell whether a generated x0 is a previous version of x1 or of x2.

Primes have the advantage that they cannot be used in C variable names, so by removing primes

from the end, users can unambiguously infer what variable an old value comes from.

99

#[export] Instance strcmp_spec: fnspec := .**/

uintptr_t strcmp(uintptr_t p1, uintptr_t p2) /**#
ghost_args := (s1 s2: list Z) (R: mem → Prop);
requires t m := <{ * nt_str s1 p1

* nt_str s2 p2
* R }> m;

ensures t' m' res := t' = t ∧
List.compare Z.compare s1 s2 = Z.compare (word.signed res) 0 ∧
<{ * nt_str s1 p1

* nt_str s2 p2
* R }> m' #**/ /**.

Derive strcmp SuchThat (fun_correct! strcmp) As strcmp_ok. .**/
{ /**. .**/
uintptr_t c1 = 0; /**. .**/
uintptr_t c2 = 0; /**.···.**/
do /* initial-ghosts(s1, s2, p1_pre, p2_pre, R); decreases (len s1) */ { /**. .**/
c1 = deref8(p1); /**. .**/
c2 = deref8(p2); /**. .**/
p1 = p1 + 1; /**. .**/
p2 = p2 + 1; /**. .**/

} while (c1 == c2 && c1 != 0); /**.···.**/
return c1 - c2; /**. .**/

} /**.···.**/ //.

Figure 5.6: Viewing a do-while loop as a tail-recursive function to simplify the correctness proof.

Note that a total of 32 lines of proof has been folded into ···.

100

wp-if

eval_expr_as_bool 𝜎 𝑒 𝑏

(𝑏 = true ⇒ wp 𝜎 𝑡ℎ𝑛 𝑄1)
(𝑏 = false ⇒ wp 𝜎 𝑒𝑙𝑠 𝑄2)

∀𝜎′. (if 𝑏 then 𝑄1 𝜎
′ else 𝑄2 𝜎

′) ⇒ wp 𝜎′ 𝑟𝑒𝑠𝑡 𝑃

wp 𝜎 (if(𝑒){𝑡ℎ𝑛}else{𝑒𝑙𝑠}; 𝑟𝑒𝑠𝑡) 𝑃

(a) Weakest-precondition lemma for if-then-else, presented as a simplified inference rule. Note that the

if below the line belongs to the object language (Bedrock2), whereas the if above the line belongs to the

metalanguage (Coq).

Definition after_if fs (b: bool) (Q1 Q2: trace → mem → locals → Prop) rest post :=
∀ t m l, (let c := b in if c then Q1 t m l else Q2 t m l) → wp_cmd fs rest t m l post.

Lemma wp_if_bool-dexpr fs c thn els rest t0 m0 l0 b Q1 Q2 post:
dexpr_bool3 m0 l0 c b

(then_branch_marker (wp_cmd fs thn t0 m0 l0 (package_context_marker Q1)))
(else_branch_marker (wp_cmd fs els t0 m0 l0 (package_context_marker Q2)))
(pop_scope_marker (after_if fs b Q1 Q2 rest post)) →

wp_cmd fs (cmd.seq (cmd.cond c thn els) rest) t0 m0 l0 post.

(b) Tailored weakest-precondition lemma for if-then-else. The three definitions ending in _marker all are

identity functions, but help the tactics keep track of where we are and what to do.

Figure 5.7: Weakest-precondition lemma for if-then-else

5.4.7 Context Packaging and Merging for if-then-else

The lemma that we use for if-then-else is given in Figure 5.7. Its essence is summarized as an

inference rule in Figure 5.7a, and the lemma that we actually use is given in Figure 5.7b.

When wp-if gets applied, evars are created for the result 𝑏 of evaluating the condition 𝑒 , for the

code snippets 𝑡ℎ𝑛, 𝑒𝑙𝑠 , and 𝑟𝑒𝑠𝑡 , as well as for the postconditions of the two branches, 𝑄1 and 𝑄2.

The tactics first evaluate the condition 𝑒 into a Boolean𝑏. Then, the user can provide more snippets

that make up the code of the then-branch. When providing the snippet .**/ } else { /**., the

then-branch is closed, and the evar ?𝑄1 is instantiated by our tactics to a conjunction of all the

hypotheses in the current context. When the user closes the else-branch, ?𝑄2 is instantiated in the

same way, and before the first command after the if-then-else is processed, the two symbolic states

(expressed by 𝑄1 and 𝑄2) are merged by pushing down the metalanguage if as far as possible by

detecting parts in𝑄1 and𝑄2 that have the same structure. The tactics bind the value of 𝑏 to a fresh

variable, so that we can mention it many times without becoming overly verbose. This merging

101

results in symbolic states containing hypotheses with many if-then-else expressions like e.g. in the

following:

H1 : m0 |= uint 32 (if c' then in1 else if c then in2 else in0) a0

Def7 : w1 = (if c' then /[in0] else /[in1])

A /* split */ option is available that can be inserted after the if condition if one prefers to

continue the proof separately after the if-then-else rather than using a merged state. However,

this option is only available if the if-then-else is at the end of a block with a concrete postcondition

(i.e. a loop invariant or the function’s postcondition), because splitting the proof of the code after

the if-then-else into two separate proofs would require writing down all the code snippets (which

drive the proof) twice, which would not result in the desired C code when treating the Coq file as

a C file.

5.4.8 Optimize theUser Experience for Failing Proofs Instead ofWorking Proofs

In the past, most frameworks for automated program proofs have focused on presenting automated

proofs that work. However, we must recognize that the default case that users of program verifi-

cation tools face is the case where the prover fails or seems to run forever, for one of the following

reasons:

• The program or the specification contains a bug.

• A user-provided invariant is not strong enough.

• The prover lacks some domain-specific insight or hint that needs to be provided by the user.

We believe that debugging these situations, and being able to determine quickly which of the

above is the case, is the primary usability criterion for a program-verification tool, much more

important than the number of lines of proof script that users need to provide manually.

Therefore, we adhere to three principles described in the following subsections.

5.4.8.1 Do Not Run “Forever” on Failing Proofs

We carefully designed our proof automation in such a way that it never runs for longer than a few

seconds, and if it does, we consider it a bug. This is important because in order to figure out why a

prover cannot prove a certain goal, one needs to try many different variations of the goal and see

which ones the prover can and cannot prove. Now, if the prover runs “forever” (i.e., longer than

it makes sense to wait) on failing goals (which, e.g., happened often in our experience with Dafny

on programs that use the heap extensively), the user never quite knows whether waiting for a few

102

more seconds would have solved the goal, and the user’s mental model of what the tool can and

cannot solve becomes inconsistent.

5.4.8.2 Actionable Error Messages

If the tool fails to prove a goal, it should provide the user with an error message containing infor-

mation on what it tried and what (currently unprovable) conditions might enable it to make more

progress.

As an example, let us look more closely at separation-logic cancellation, which is required e.g.

before function calls, tomatch the caller’s symbolic heap to the callee’s symbolic heap. The strategy

is repeatedly to delete separation clauses that appear both in the caller’s heap and in the callee’s

heap. Since the clauses in the callee’s heap typically contain evars for the callee’s ghost arguments

(because ghost arguments do not get mentioned in the source code), our procedure carefully only

instantiates an evar if there is a unique choice. Sometimes, e.g. when a record field or a slice of an

array is passed to the callee, cancellation needs to split a caller’s clause before it can proceed. So,

if the callee expects a chunk of memory covering the range starting at address 𝑎 of size 𝑛, we need

to find a clause in the caller’s heap covering a superrange of that range, starting at an address 𝑎′

and of a size 𝑛′ such that the subset relation on half-open intervals [𝑎, 𝑎 + 𝑛[⊆ [𝑎′, 𝑎′ + 𝑛′[holds,
written in Coq as subrange a n a' n'.

Say we want to implement and verify a function with the following signature:

uintptr_t safeCopySlice(uintptr_t src, uintptr_t srcOfs, uintptr_t srcLen,

uintptr_t unsafeN, uintptr_t dst, uintptr_t dstOfs, uintptr_t dstLen)

Its full specification spans 25 lines of code and is given in Figure 5.8 but is more easily expressed

in English: Given a byte array of length srcLen at address src and a byte array of length dstLen

at address dst, we want to copy unsafeN bytes starting at offset srcOfs in the source array to

offset dstOfs in the destination array. We already know that srcOfs and dstOfs are within bounds,

but unsafeN comes from an untrusted origin and needs to be checked. We might start with the

following:

Derive safeCopySlice SuchThat (fun_correct! safeCopySlice) As safeCopySlice_ok. .**/

{ /**. .**/

if (srcOfs + unsafeN <= srcLen && dstOfs + unsafeN <= dstLen) /*split*/ { /**. .**/

Memcpy(dst + dstOfs, src + srcOfs, unsafeN); /**.

After processing the proof just until before the Memcpy call, our symbolic state contains 16

uninteresting lines listing variables that we elide, followed by what is shown in Figure 5.9.

103

#[export] Instance spec_of_safeCopySlice: fnspec := .**/

uintptr_t safeCopySlice(
uintptr_t src, uintptr_t srcOfs, uintptr_t srcLen,
uintptr_t unsafeN,
uintptr_t dst, uintptr_t dstOfs, uintptr_t dstLen

) /**#
ghost_args := srcData dstData dstUninit (R: mem → Prop);
requires t m :=
<{ * array (uint 8) \[srcLen] srcData src

* array (uint 8) \[dstLen] (dstData ++ dstUninit) dst
* R }> m ∧

\[srcOfs] <= \[srcLen] ∧
len dstData = \[dstOfs];

ensures t' m' r := t' = t ∧
((r = /[0] ∧

<{ * array (uint 8) \[srcLen] srcData src
* array (uint 8) \[dstLen] (dstData ++ dstUninit) dst
* R }> m') ∨

(r = /[1] ∧
<{ * array (uint 8) \[srcLen] srcData src

* array (uint 8) \[dstLen] (dstData ++
srcData[\[srcOfs]:][:\[unsafeN]] ++
dstUninit[\[unsafeN]:]) dst

* R }> m')) #**/ /**.
Derive safeCopySlice SuchThat (fun_correct! safeCopySlice) As safeCopySlice_ok. .**/
{ /**. .**/
if (unsafeN <= srcLen - srcOfs && unsafeN <= dstLen - dstOfs) /*split*/ { /**. .**/
Memcpy(dst + dstOfs, src + srcOfs, unsafeN); /**. .**/
return 1; /**. .**/

} /**. .**/
else { /**. .**/

return 0; /**. .**/
} /**. .**/

} /**.
Qed.

Figure 5.8: The specification as well as the final, correct implementation of safeCopySlice. Note

that all the proof steps are completely automated, including the splitting of the source and desti-

nation arrays before the Memcpy call, pasting them back together after the call, and matching that

result to the desired postcondition.

104

H0 : m0 |= array (uint 8) \[srcLen] srcData src
H2 : m2 |= array (uint 8) \[dstLen] (dstData ++ dstUninit) dst
H3 : m3 |= R
D : m0 */ (m2 */ m3) = m
Hp1 : \[srcOfs] <= \[srcLen]
Hp2 : len dstData = \[dstOfs]
Scope2 : ____ IfCondition ____
H : \[srcOfs ^+ unsafeN] <= \[srcLen]
H1 : \[dstOfs ^+ unsafeN] <= \[dstLen]
Scope3 : ____ ThenBranch ____
============================
ready

Figure 5.9: Proof goal before Memcpy

At this point, the user could start wondering whether the word addition in hypothesis H, i.e.

\[srcOfs ^+ unsafeN], could also be expressed as an addition onℤ, i.e. as \[srcOfs] + \[unsafeN],

and why the tool did not do that, even though it usually does, or the user can also just carry on

and move the proof cursor past the Memcpy call. Doing so changes the conclusion of the goal to

(find_hyp_for_range (dst ^+ dstOfs) (\[unsafeN] * 1) 𝑋), where 𝑋 is a bigger goal that we

elided for presentation purposes. find_hyp_for_range is a Gallina definition of an identity function

that takes two phantom arguments that it ignores, plus a third one, 𝑋 , that it returns. It serves as a

marker to inform the tactics as well as the user that the tool is performing cancellation and looking

for a separation-logic clause in the caller’s symbolic heap whose range starts at (dst ^+ dstOfs)

and spans (\[unsafeN] * 1) bytes. The tool also emits the following error message: "Exactly one

of the following claims should hold:" [|subrange (dst ^+ dstOfs) (\[unsafeN] * 1) src

(\[srcLen] * 1); inrange src (dst ^+ dstOfs) (\[unsafeN] * 1); subrange (dst ^+ dstOfs)

(\[unsafeN] * 1) dst (\[dstLen] * 1); inrange dst (dst ^+ dstOfs) (\[unsafeN] * 1)|] !

This message might look quite unintelligible at first, but we will show how it is actionable in the

sense that it points the user to something to try to prove that is unprovable and will make the user

understand the bug. The message contains four semicolon-separated claims and says that exactly

one of them should hold. We can ignore the two inrange claims, because they are only needed to

split separation-logic clauses on the callee side, which we do not expect to happen here, so we are

left with just two subrange claims, and the second one looks like it should be provable (whereas

the first one tries to relate completely unrelated ranges, one in dst, the other in src). Since we are

in Coq’s proof mode, right after the call to Memcpy, we can insert the following Ltac snippet to try

to prove the subrange claim that we think should hold:

105

assert (subrange (dst ^+ dstOfs) (\[unsafeN] * 1) dst (\[dstLen] * 1)). {

unfold subrange. bottom_up_simpl-in_goal.

It leads to a new goal with conclusion \[dstOfs] + \[unsafeN] <= \[dstLen], but the most

closely matching hypothesis is H1 (see Figure 5.9), which performs the addition on word instead

of on ℤ. So now, the user might complain about how limited the proof automation of this Live

Verification tool is and attempt to prove the goal manually, by invoking Coq’s standard Search

command with the pattern \[_ ^+ _] as its argument, whose top two results are a lemma which

shows that for all words x and y, \[x ^+ y] = word.wrap (\[x] + \[y]); and onewhich shows that

if \[x] + \[y] < 2 ^ width, then \[x ^+ y] = \[x] + \[y]. By this point, it should have become

clear that the program contains an overflow bug: If unsafeN is very big, the addition overflows

and results in a small number that might satisfy the condition tested by the if on the first line

of safeCopySlice, but the Memcpy will still copy unsafeN bytes and overwrite out-of-bounds data,

which could be exploited by attackers for arbitrary code execution. In fact, this (seemingly simple)

type of bug (overflow on unsigned integer addition that computes the required amount of mem-

ory) led to the stagefright bugs, which in 2015 exposed the majority of Android users to no-click

remote code execution on mere reception of a malicious MMS message.
9
Replacing the test by the

following, overflow-safe variant resolves the problem:

if (unsafeN <= srcLen - srcOfs && unsafeN <= dstLen - dstOfs) /*split*/ { /**. .**/

For reference, the corrected full program (which does not do anything more in addition to what

was already shown except returning 1 or 0 depending on whether unsafeN was accepted) is given

in Figure 5.8. We note that all its proof steps are completely automated, including the splitting of

the source and destination arrays before the Memcpy call, pasting them back together after the call,

and matching that result to the desired postcondition.

5.4.8.3 Safe Steps – Avoiding Backtracking for Better Proof Debuggability

To make our proof automation more debuggable, we avoid backtracking as much as possible and

instead use mechanisms that allow us to know whether a proof step is safe, i.e. will not turn a

provable goal into an unprovable one. We expose a tactic called step to the user, and when a proof

does not work, the user can disable the automatic invocation of side-condition solving by replacing

the /**. after a snippet by /*?. and then manually invoke stepmany times and watch step-by-step

what the prover does and how it affects the proof goal.

9
https://en.wikipedia.org/wiki/Stagefright_(bug), https://nvd.nist.gov/vuln/detail/CVE-2015-3864,

https://www.exploit-db.com/docs/39527

106

https://en.wikipedia.org/wiki/Stagefright_(bug)
https://nvd.nist.gov/vuln/detail/CVE-2015-3864
https://www.exploit-db.com/docs/39527

To give an example of safe and unsafe steps, if we have a goal ?xs ++ ?ys = vs1 ++ vs2, i.e.

two evars on the left and normal variables on the right, it would be tempting to just instanti-

ate ?xs to vs1 and ?ys to vs2. However, this choice might make another goal in which the two

evars also appear unsolvable, because the correct choice for ?xs might be vs1 ++ vs2[:1], and

the correct choice for ?ys would then be vs2[1:]. On the other hand, on a very similar-looking

goal, vs1 ++ ?ys = vs1 ++ vs2, it is safe to instantiate ?ys to vs2, because that is the only possible

choice.

We use a user-extensible hint database of judgments of the form safe_implication P Q, which

is defined as P implies Q. The opposite direction usually also holds, but in some cases, Q does not

quite imply P, yet the only reasonable way to prove Q is to reduce it to proving P, so we do not

require the opposite implication direction. For examples like the above, our hint database of safe

steps contains the following two rules:

• safe_implication (ys1 = ys2) (xs ++ ys1 = xs ++ ys2)

• safe_implication (xs1 = xs2) (xs1 ++ ys = xs2 ++ ys)

As an example of how safe steps can help debug failing proofs, consider the last proof step of

the insert function of a binary search tree, in the case where a new leaf had to be allocated for the

value to be added. Assume that the programmer correctly initialized all fields of the new leaf but

forgot to link the leaf to the parent node. The return value of the function is specified to be 0 if the

memory allocator failed and 1 if it succeeded. Figure 5.10 shows the postcondition that needs to

be proven in this case.

To debug why this postcondition cannot be proven automatically, the user can insert and pro-

cess
10
many invocations of step and see how they try to solve the goal step-by-step. Each step also

prints a short description of what it did. Here, we just summarize the most interesting steps. The

full log of all steps is given in Appendix B. One of the first steps gets rid of the trivial equality t = t,

and a subsequent step notices that since \[/[1]] = 0 can never hold, it is safe to attempt proving

only the right-hand side of the disjunction. Further steps then start cancelling the separation-

logic formula with clauses from the hypotheses (not shown here) and manage to prove everything

except a remaining goal (is_empty_set (fun x : Z ⇒ x = \[vAdd] ∨ s x)), which asks us to

prove that a set, expressed as a lambda returning a proposition, is empty, even though it clearly

contains at least one element, namely \[vAdd]. Here we see a case where reducing unprovability

to the smallest possible core is actually too much, so that it is not easily understandable anymore

why the tool asks us to prove this contradictory goal. But, fortunately, one of the intermediate

10
We provide an Emacs macro to do so efficiently (see section 5.4.3), but simple copy-paste works as well.

107

t = t ∧
(\[/[1]] = 0 ∧
<{ * allocator_failed_below 12

* (EX rootp : word, <{ * uintptr rootp p
* (EX sk : tree_skeleton, bst' sk s rootp) }>)

* R }> m4 ∨
\[/[1]] = 1 ∧
<{ * allocator

* (EX rootp : word,
<{ * uintptr rootp p

* (EX sk : tree_skeleton, bst' sk (fun x : Z ⇒ x = \[vAdd] ∨ s x) rootp) }>)
* R }> m4)

Figure 5.10: Postcondition that needs to be proven in one case at the end of a (buggy) binary-

search-tree insert, where bst' sk s a asserts that at address a is found a binary search tree whose

tree structure is sk and whose contents correspond to the set s, represented as a proposition over

values.

goals that the user encounters while invoking step repeatedly is more enlightening: It asks the

user to prove bst' ?x (fun x : Z ⇒ x = \[vAdd] ∨ s x) /[0], i.e. that at address 0, there is a

binary search tree containing vAdd, the value being inserted. However, what we expect to prove

is that this binary search tree is at some nonzero address p, which points us directly to our bug,

namely that the pointer that should point to our newly allocated leaf still is 0 instead of p.

So, to summarize, this example shows that sometimes (in fact, often, in our experience), neither

the full initial unprovable goal nor its smallest unprovable core is very enlightening, but the most

enlightening goal is somewhere in-between during the automated proof process, and giving the

users a means of running this automated proof process step-by-step enables them to understand

more quickly why a goal cannot be proven.

5.4.9 Automated Splitting and Merging of Separation Logic Clauses

A common pattern in separation logic proofs is that a caller has a big separation logic clause (e.g.,

an array or a record) and needs to pass a subpart of it (e.g. one array element or a slice of the

array or a record field) to an operation such as a memory load or store or a function call. Through

specialized lemmas, VST [Cao et al., 2018, Section 5.4.2] provides automation for this pattern in the

case of memory loads and stores, but it comes with two limitations: The automation only works

for memory loads and stores, but not for function calls, and it only works if the access path is fully

108

spelled out at the point in the source program where the memory access happens.

An access path describes how to access a subpart of a nested combination of arrays and records,

as e.g. in .myField[i].otherField[j][k]. However, as soon as the access path is not fully spelled

out at the point in the source program where the memory access happens, VST’s automation does

not work fully automatically any more. An example of such a situation would be that before a

loop, a pointer p is initialized to &(myRecord.myField[0]), and inside the loop, a memory load at p

is made and p is incremented.

Our separation logic automation lifts both of the above limitations: To support function calls

that modify a subpart of a callee’s separation logic clause, the same automation as for memory

loads and stores is used. That is, the split-and-merge procedure described in section 5.3.1.9 is also

used for cases like the Memcpy call in Figure 5.8. Moreover, in order not to rely on access paths, all

the reasoning is performed in terms of addresses (bounded integers), and to test which record field

an address belongs to, queries to Coq’s linear integer arithmetic solver lia are made.

5.5 Implementation Notes

5.5.1 Parsing C in Coq

Using Coq’s notation system , we can declaratively write a parser for a big enough subset of C. Our

ASTs use strings to represent identifiers, but we do not want double quotes around these strings

to appear in our C code. Unfortunately, there is no officially supported way of getting rid of these

quotes in Coq. But using a somewhat sinister trick by Pit-Claudel and Bourgeat [2021, Section 3]

that combines notations, tactics in terms, and Ltac2’s low-level API, we can give Ltac2 access to

an unbound identifier, before Coq attempts to check the term and complains that the identifier is

unbound, and we inspect the identifier in Ltac2 and convert the underlying OCaml string into a

Gallina string.

5.5.2 Tailored Weakest-Precondition Lemmas

Based on wp rules like the ones in Figure 5.3, we prove another layer of wp rules (two of which are

shown in Figure 5.11) that is tailored to work well with the proof-automation tactics.

While wp-set uses two separate hypotheses for the evaluation of the expression 𝑒 and the

remainder of the program 𝑟𝑒𝑠𝑡 , wp_set uses a judgment called dexpr1 whose last argument is a

proposition that needs to hold after evaluating e, so that changes to the symbolic state (i.e. changes

109

Lemma wp_set: forall fs x e v t m l rest post,
dexpr1 m l e v (update_locals [|x|] [|v|] l (fun l' => wp_cmd fs rest t m l' post))→
wp_cmd fs (cmd.seq (cmd.set x e) rest) t m l post.

Lemma wp_while {measure: Type} (v0: measure) (e: expr) (c: cmd) t (m: mem) l fs rest
(Inv: measure→ trace→ mem→ locals→ Prop) {lt} {post: trace→ mem→ locals→ Prop}:
Inv v0 t m l→
well_founded lt→
(∀ v t m l, Inv v t m l→
∃ b, dexpr_bool3 m l e b

(loop_body_marker (wp_cmd fs c t m l (fun t m l => ∃ v', Inv v' t m l /\ lt v' v)))
(pop_scope_marker (after_loop fs rest t m l post))
True)→

wp_cmd fs (cmd.seq (cmd.while e c) rest) t m l post.

Figure 5.11: Tailored Weakest-Precondition Lemmas

to the hypotheses of the proof goal) that are made while evaluating e are also visible to the proof

code for the rest of the program. For instance, if the evaluation of e contained some memory access

that treats some byte buffer as a record, the proof for e will change the corresponding hypothesis

from a byte-array predicate to a record predicate, and it is usually desirable to preserve this change

for the rest of the program.

Lemma wp_while (Figure 5.11) is based on wp-while (Figure 5.3) but adds a termination mea-

sure that needs to decrease at the end of each iteration according to a user-provided less-than pred-

icate lt which needs to be well-founded. The lemma contains markers such as loop_body_marker,

pop_scope_marker, and after_loop (an alias of wp_cmd) that inform the tactics what to do. It uses

a judgment called dexpr_bool3, whose last three arguments are propositions that need to hold in

case the Boolean b obtained from evaluating the expression e turns out to be true, false, or ei-

ther, respectively. For example, a loop searching through a tree where null pointers are used for

leaves might start with while (p && load(p) != key), and during the evaluation of the condition,

in the case where p is non-null, this fact allows us to turn the memory assertion which says that

at p, we either have a leaf or a node into one that says we certainly have a node at p, and using

dexpr_bool3 instead of a simple conjunction that gets split into separate subgoals allows us to keep

this modification visible to the evaluation of the loop body.

110

5.5.3 Extracting Pure Facts From Sep Clauses

A separation-logic formula often contains some pure (i.e. heap-independent) facts, either by explic-

itly asserting them or because its definition implies them. For example, a (ring_buffer cap vs a)

judgment declaring a circular buffer of capacity cap at address a containing the elements in list vs

might imply the pure fact len vs <= cap.

In order to make such pure facts available to our solver for arithmetic side conditions, we define

the judgment purify R P := ∀ (m: mem), R m → P, and whenever we define a new separation-

logic predicate R, we also prove a corresponding purify lemma and register it in a custom hint

database. Before running side-condition solvers, our framework searches the hint database for a

purification rule of the form (purify R _) for each separation-logic clause R and applies all the

rules it finds.

5.5.4 Pattern-Based Selective Warning Suppression

If the framework encounters a separation-logic clause for which it cannot find a purify hint or a

PredicateSize, it emits a warning, because often, this is the reason a proof does not go through. But

some clauses do not contain pure facts or do not have constant sizes. For these, wewant to suppress

the warning selectively. To do so, we use a Coq hint database to which we add the patterns of all

warnings that should be suppressed. Compared to most other warning-suppression mechanisms,

which only allow warnings to be suppressed by their kinds, ours also allows suppressing them

based on their arguments, without any additional implementation effort: We just piggy-back on

Coq’s very general building blocks and benefit from implementing the framework in the same

language as the user-facing language.

5.5.5 Mixed Word/Integer Arithmetic Side Conditions

When reasoning about array accesses and simplifying symbolic expressions indexing into lists,

many arithmetic side conditions need to be solved. Since our specifications are written in terms of

ℤ, but the programs operate on a bounded word type, we obtain side conditions that mix the two.

We solve such a goal as follows: First, if it is an equality or inequality onwords, we use an injectivity

lemma to reduce it to an equality or inequality onℤ. Next, we push down all conversions fromword

to ℤ (written as \[x]), transforming them into modulos. For instance, \[a ^+ b] gets rewritten to

(\[a] + \[b]) mod 2 ^ 32. Then, we eliminate modulos using the Euclidean equations, leading

to terms like \[a] + \[b] - 2 ^ 32 * k, where k is (\[a] + \[b]) / 2 ^ 32. For efficiency, our

111

implementation merges these two steps into one. This push-down of \[_ OP _] into \[_] OP \[_]

with modulos is applied recursively until only variables or uninterpreted functions are wrapped

in \[_]. Bounds are then asserted, since interpreting a word as an unsigned ℤ always leads to a

number between 0 and 2 ^ 32. Finally, we invoke Coq’s linear-arithmetic solver lia.

5.5.6 Undoable, Reusable ℤification

We call the preprocessing described in the previous subsection ℤification. Before solving arith-

metic side conditions, it has to be applied to the conclusion, as well as to all arithmetic hypotheses.

Our bottom-up term-simplification procedure needs to invoke arithmetic-side-condition solving

hundreds of times in order to find which simplifications to apply. For instance, when encountering

a list slice starting at i of a list append like (xs ++ ys ++ zs)[i:], we need to test whether i is

≤ 0, points somewhere into xs, ys, or zs, or whether it exceeds the whole length, which already

amounts to 5 separate queries. ℤifying all hypotheses from scratch for each arithmetic side con-

dition would be unacceptably slow. Instead, we implement ℤification in such a way that it does

not modify any hypotheses but just makes a ℤified copy of each arithmetic hypothesis. Each time

the user adds a new C snippet, we run hypothesis ℤification once and reuse the ℤified hypotheses

for many side conditions, and just as the last step before marking the goal as ready for the next C

snippet, we clear all the ℤified hypotheses, so that a clean and concise context is presented to the

user.

5.5.7 On-Demand Addition of Callee-Correctness Hypotheses

The correctness statement of a function in our framework whose direct callees are 𝑐1, 𝑐2, . . .𝑐𝑁

roughly looks like spec of 𝑐1 ∧ . . . ∧spec of 𝑐𝑁 ⇒ ∀ 𝑡 𝑚 𝑠. Pre(𝑡,𝑚, 𝑠) ⇒ wp env (𝑡,𝑚, 𝑠) 𝑏𝑜𝑑𝑦 Post.
Listing the specifications of the callees allows our proofs to abstract over callee implementations:

For each callee, all we require is that the function environment env contains a function satisfying

some spec. But at the moment we start a function’s correctness proof, we do not know yet its

function body, so we cannot yet determine its list of callees. We resolve this seemingly circular

dependency using an evar. Each function definition is augmented with its list of callee specs, which

is instantiated to an evar at the beginning of the proof. The hypothesis of the proof is then just

a fold using logical “and” over this (not-yet-instantiated) list of callee specs. Whenever we call a

function whose spec is s, we instantiate this evar to (cons s ?new_evar), and at the end of the

function, we instantiate the remaining evar to the empty list.

112

5.5.8 Discussion

In the following, we discuss a few design alternatives that we decided not to pursue further.

5.5.8.1 Why Not a Stand-Alone Tool?

Building our framework inside Coq required us to go through some contortions, especially to make

tactic invocations look like C snippets – clearly, Coq was not designed to do this.

In order to build a software-verification tool that provides a live display of the current symbolic

state, we could also have built a stand-alone tool from scratch, which might have saved us some

trouble and, if implemented well, might also have been more performant because it could be more

specialized to our task, thus not having to pay the cost of being run inside a tool as generic as Coq.

However, Coq still has several advantages that made us choose it: Coq provides many term-

manipulation facilities, including concise term matching, and its foundational proofs, i.e. proofs

that are checked by its small proof-checking kernel, guarantee soundness, so that bugs in our

framework cannot lead to wrong proofs, which allows us to modify the tool more freely and confi-

dently, without worrying about soundness at each modification. Finally, working with Coq paves

the way for connecting to the many other interesting verified artifacts in the Coq ecosystem.

5.5.8.2 Limiting the Number of Conversions and Avoiding Operator Overloading

To avoid accidental overflows in our specifications, we write them using unbounded integers ℤ,

but the values treated by our programs are bounded 32-bit integers, and loading and storing 8-bit

and 16-bit values is supported as well. Moreover, certain values in the specifications cannot be

negative, so they would belong to ℕ. We tried using separate types for ℕ, ℤ, 8-bit, 16-bit, and

32-bit words, but it led to two problems:

First, since Coq does not support subtyping natively, coercion functions are needed between

different number types. Writing and displaying them explicitly becomes very verbose quickly, and

relying on Coq’s implicit-coercion feature did not work well. Coercions are inserted during type-

checking, so patterns, which are untyped, do not have them inserted, which can lead to confusion.

Coercions also make it harder to copy-paste a term from the goal into the proof script, because one

might miss a coercion that only gets inserted because of the surrounding context.

The second problem was operator overloading: We would like to use some short infix notation

for common operators like addition, subtraction, etc. Coq provides a mechanism called notation

scopes that works well as long as no polymorphic functions are used, because when parsing the

113

arguments of a function, Coq relies on the signature of the function to determine in which notation

scope (e.g. the notation scope for ℕ or for ℤ) to parse the arguments. Another popular mechanism

for operator overloading is to use type classes. For instance, the infix notation (a + b) might be

defined as (TypeclassBasedAdd a b), where TypeclassBasedAdd takes an implicit argument that is

a type-class instance implementing addition on the type of a and b. However, if we simplify terms

or obtain terms from third-party libraries not using such a type class-based notation system, they

contain the plain (Nat.add a b) instead of our type class-based one, so they will not be printed the

same and will not match our terms syntactically. Similar problems occur with a related approach

based on canonical structures. We also tried an operator-overloading approach using notations

with tactics in terms that type-checks the operands and picks the right operator based on the type

of the operands, resulting in plain terms like (Nat.add a b), combined with ambiguous printing-

only notations that use the same + symbol for addition on all types. It was a bit heavy-weight and

did not work in patterns (because they are not type-checked), so we stopped using it.

Finally, we decided to restrict ourselves to just two number types: 32-bit words andℤ. This ap-

proach only requires three coercions: truncating aℤ to a bounded integer (which wewrite as /[x]),

interpreting a word as a signed integer (which we use less frequently and write as word.signed x),

and interpreting a word as an unsigned integer (which we write as \[x]). It also only requires two

sets of infix arithmetic operators, so we use the regular operators for ℤ and operators prefixed by

^ such as ^+, ^-, etc. for words.

5.5.8.3 Selectively Unfolding wpgen vs. Repeatedly Applying WP Lemmas

Repeatedly unfolding the leftmost occurrence of a weakest-precondition generator (section 5.2.1) in

the proof goal results in the same series of proof goals as repeatedly applyingweakest-precondition

rules (section 5.2.3).

The reason we prefer the latter approach is due to a design choice in Coq’s implementation:

While constructing proofs using tactics, each application of a lemma is recorded as a function

application in the proof term being built, but unfolding of definitions and simplification of terms

according to the evaluation rules of the Gallina language are not recorded in the proof term. There-

fore, at the end of the proof, when the generated proof term is rechecked by Coq’s small trusted

kernel, the type checker will encounter situations where the inferred type of a proof term does not

match the expected type of a proof term, and it needs to unify these two types by unfolding and

evaluating some definitions appearing in the two types. To do so, it uses some heuristics based on

lazy evaluation but does not have any way of seeing the simplifications that were done during the

114

construction of the proof. Therefore, relying on these unification heuristics too much can lead to

very slow Qed processing times, and it is preferable to use explicit lemma applications that leave a

trace of the kind of performed simplifications in the proof term.

5.5.8.4 Implementation Language

Our framework is implemented using a mix of tactic scripts and lemmas and definitions in Gallina

(Coq’s specification language) that are specifically tailored to work well with our tactic scripts. For

compatibility with other code from the Bedrock2 ecosystem, we refrain from modifying Coq itself

(even though such modifications might have simplified certain parts); and for easy compatibility

with new Coq versions, we refrain from writing any OCaml plugins, because Coq’s OCaml API

tends to change with each Coq version. The tactics are implemented in a mix of Ltac1 and Ltac2.

5.5.8.5 Ltac1 vs. Ltac2: When to Prefer an Untyped Language With Undocumented Semantics

Ltac1 is an untyped language without clearly specified semantics. For instance, whether a variable

refers to a binder declared in Ltac, to a binder declared in a Gallina term quoted inside Ltac code,

or to the name of a hypothesis in the current proof context is decided at runtime, in a barely

documented manner. It can also happen that a thunk being passed to a function and meant to

be evaluated lazily can accidentally be evaluated eagerly. Another common source of surprises is

that whether a tactic is a pure function returning a term or an imperative program modifying the

current proof goal is also decided at runtime.

Ltac2 addresses these shortcomings by being a typed language with straightforward call-by-

value semantics and unambiguous quotation mechanisms to make it clear what variables refers to.

In addition, it offers some low-level APIs that Ltac1 does not have.

Given this situation, one might expect that the unambiguously preferred choice for the whole

framework would be Ltac2. However, this is not the case in our experience:

First, even though Ltac2 has been developed over several years now, it still lacks support

for many tasks that can be done in Ltac1 much more easily, so when writing Ltac2, a consid-

erable amount of time is spent working around non-fundamental limitations related to not-yet-

implemented features. And second, Ltac1 code is exceptionally concise, in a manner that really

matters: In our experience, there seems to be a certain verbosity threshold below which a tactic

programmer can read and understand tactic code very quickly and easily, and Ltac1 is the only

programming language we know to be below this verbosity threshold. The reason for Ltac2 often

being above it seems to be on one hand that it is typed and more principled, i.e. it requires being

115

explicit about many things that are implicit in Ltac1; requiring more explicit quotation, unquota-

tions, thunking, and other requirements of being explicit about things that are implicit in Ltac1

(e.g. when to focus on one goal) and on the other hand, that less effort has been spent yet on defin-

ing concise notations for Ltac2. We are curious to see how future evolution of Ltac2 affects these

considerations.

For now, we use a mix of Ltac1 and Ltac2, preferring Ltac2 for bigger, more complex functions,

where the benefit of catching errors before tactic runtime is considerable, and for situations where

low-level term APIs are needed.

5.6 Evaluation

5.6.1 Scope of Sample Programs

We used our tool to verify a few sample functions listed in Table 5.2, trying to cover an interesting

set of low-level memory-handling patterns. It includes splitting a byte buffer into a linked list of

free blocks in the init function of a simple malloc library with a fixed block allocation size, lookup

and insertion functions for a binary search tree and a crit-bit tree [Bernstein, 2006] where we

exploit the pre-/postcondition loop verification style by Tuerk [2010] to avoid the need for “tree-

with-a-hole” predicates, passing record fields and subarrays to functions with automatic splitting

of the callers’ record or array predicates, and functions with up to three if-then-else constructs.

The crit-bit tree example shows that we can also support data structures with more involved

validity constraints, at the expense of more manual proof lines, though we believe that a more

automated proof style could reduce the number of lines of proof. This example also provides a

data point on usability of our framework, because the example was developed by an undergraduate

student, Viktor Fukala, who did not participate in the development of the framework and had

started to learn Coq less than three months before completing this proof of crit-bit lookup and

insert functions (critbit v1 in Table 5.2). Later, he also added functions for deletion, obtaining

min and max keys as well as the next key greater than a given key and support for iteration,

leading to a development [Fukala, 2024] of 356 lines of C code spanning 23 functions, inside a Coq

file with 5495 lines of code (critbit v2 in Table 5.2).

116

File Funcs Snippets Lines Time[s] Loops

onesize_malloc 3 24 345 20 1 + 0
tree_set 4 66 389 74 0 + 2
swap 2 10 44 4 −
swap_record_fields 2 6 83 4 −
fibonacci 1 17 83 9 1 + 0
memset 1 7 41 9 1 + 0
sort3 1 22 51 36 −
swap_subarrays 1 3 48 16 −
sort3_separate_args 1 22 58 23 −
linked_list 2 16 252 10 1 + 1
nt_uint8_string 1 11 299 61 0 + 1
min 3 32 71 7 −
critbit v1 8 122 1881 255 2 + 2
critbit v2 23 356 5495 455 3 + 9

Table 5.2: Statistics on our case studies. The two numbers in the Loops column indicate the number

of invariant-based loop proofs and the number of of pre-/post-based loop proofs, respectively.

5.6.2 Qualitative Discussion of Loop-Invariants-as-Diff Approach

As illustrated by the example in section 5.3.1.7, in our framework, users express loop invariants

as diffs from symbolic state before loops. Table 5.3 shows why we prefer this middle ground over

the two extremes in the design space, manually spelled-out invariants or automatically inferred

invariants.

By robustness, we mean how likely it is that after a small modification of the program, the

proof still works. Manually spelled-out loop invariants are very likely to require some update

after a program modification, whereas an invariant expressed as a diff that just encodes the insight

and avoids mentioning irrelevant details is more likely to remain applicable. Automated invariant

inference tends to be not so stable under modification of the proof context, because the presence of

a new but unrelated term might send the invariant search down a wrong path, so that an invariant

that was found within reasonable time before the program change might time out after the change.

By proof performance, we mean the running time it takes to produce and check the correctness

proof. Executing the diff script corresponds to proving that the symbolic state before the loop

implies the loop invariant, i.e. proof work that any framework needs to do, so we do not count it.

The expressivity of themanual and the diff approach ismaximal, because any invariant express-

117

manual by diff automatic

verbosity ⋆ ⋆⋆ ⋆⋆⋆
robustness ⋆ ⋆⋆ ⋆⋆
proof performance ⋆⋆⋆ ⋆⋆⋆ ⋆
fully expressive ✓ ✓ ✗

can display state ✓ ✓ ✗

total 5⋆ + 2✓ 7⋆ + 2✓ 6⋆ + 0✓

Table 5.3: Tradeoffs in the design space around loop-invariant automation. Conjectured ratings on

a one-star (worst) to three-star (best) rating scale.

ible in the logic can be used, whereas in the automatic approach, only those that the heuristics find

within a reasonable time limit can be used.

Another advantage of our approach (shared with the approach of manually providing loop

invariants) is that we can display a symbolic state at any point inside the loop body even if the

loop body has not been completely written yet or some parts of the proof fail because of a bug

in the code or because of a missing hint or tweak. In contrast, the fully automatic approach only

knows that it picked a reasonable loop invariant if the correctness proof of the whole loop worked

out.

Currently, the star ratings in Table 5.3 are not based on measurements but on anecdotal evi-

dence, so it is cautious to view them as conjectures. In the future, we hope to back them up with

measurements, but currently, our framework is still in an early prototype phase where most new

examples that we verify point us to some bugs and limitations in the framework that we fix on the

fly, but for a meaningful evaluation, one should not make fixes to the framework while evaluating

it.

5.6.3 Some Statistics

Some file-by-file statistics are shown in Table 5.2. The first column lists the number of functions in

each file, and the second lists the number of snippets, which typically corresponds to the number

of lines of C code. The total number of lines of each file (third column) is much bigger, because

the files also contain specifications, definitions needed to state the specifications, helper lemmas,

file-specific proof automation and hints, as well as proof code interspersed between the C snippets.

Table 5.2 also shows the total time Coq takes to verify each file. Typically, processing each

118

snippet takes just a couple of seconds, and in our experience, it is just right below the threshold of

what is bearable for interactive development (and whenever it exceeded that perceived threshold,

we spent more effort on speeding up the proof automation).

The final column shows the number of loops in each file, expressed as 𝑥 + 𝑦, where 𝑥 is the

number of loops proven with an invariant expressed as a diff script from the symbolic state before

the loop, and 𝑦 is the number of loops proven with a family of pre/postcondition pairs (in the style

popularized by Tuerk [2010]) by expressing the precondition as a diff script and automatically

generalizing the function’s postcondition to use it as the loop’s postcondition.

So far, our experience seems to confirm our conjectures from Table 5.3. Once our framework

has matured to a point where we do not anymore feel compelled to make framework improve-

ments with every new sample program, we plan to evaluate our conjectures from Table 5.3 more

rigorously.

We conjecture that describing loop invariants and loop pre/postconditions in terms of edits

needed to obtain them from the current symbolic state rather than spelling them out completely

in the proof script or as annotations in the source code has the following advantages:

1. It leads to an easier, more intuitive, and more enjoyable user experience.

2. The proofs are more robust against code changes, because diffs (edits) tend to be smaller than

whole invariants.

Unfortunately, it is hard to evaluate these conjectures empirically, because our prototype im-

plementation has not yet reached the level of usability and maturity that would be required in

order to ask a statistically significant group of test users to solve some sample tasks.

5.7 Related Work

Dafny [Leino, 2013, 2017] is a high-level programming language with a specification language and

SMT-based, highly automated proving of verification conditions. The development experience is

very interactive, as the IDE continuously checks the verification conditions. Our framework is still

far from reaching the level of automation of Dafny but does have a few advantages over Dafny:

• It allows to reason about (a subset of) C, which is more low-level and more efficient, and can

reason about low-level operations like casting byte arrays to records.

• Users can extend the proof automation with domain-specific verification procedures.

• By repeatedly invoking our step tactic, users can watch how our system solves side condi-

tions and can easily debug cases where our solver fails.

119

• The correctness of the tool itself need not be trusted, only Coq’s kernel, which is much

smaller than Coq’s tactic system and our tool’s tactics, and also much smaller than the Dafny

tool and the SMT solver it uses.

• Finally, and perhaps most importantly, our tool can provide a concise representation of ev-

erything the prover knows, in the form of the proof context (list of hypotheses) of Coq’s

current proof goal. We believe that such a concise summary of all known facts is similar

to what attentive programmers need to keep track of in their minds while programming, so

displaying it on-screen can assist the programmer. In Dafny, there is no such representation,

and the only way to find out whether the prover knows a given fact is to write it down as an

assertion at the program point in question and see if Dafny can prove it.

VeriFast [Jacobs et al., 2011] is a separation-logic-based C verification tool. Its symbolic debug-

ger can display the current symbolic state to the user at any program point, and users can affect

the symbolic state by invoking lemma functions in ghost code (comments) in the source program.

Thus, they have a way of modifying the symbolic state, and the tool ensures that these modifica-

tion are sound, because the lemma functions need to be proven in VeriFast as well. VeriFast has

a symbolic debugger and an IDE that allows developers to inspect the symbolic state at each pro-

gram point (see e.g. Figure 6 in [Jacobs et al., 2010]). VeriFast is implemented in OCaml. As far as

we know, there is no easy way to add domain-specific verification automation on a per-function

or per-module basis, while our own approach provides various Ltac hooks and hint databases that

users can extend and provides smooth integration between framework code and user code, because

both are written in the same language (Ltac).

Boogie, the intermediate verification language powering Dafny, used to have a verification de-

bugger [Le Goues et al., 2011] providing counterexamples for failed verification conditions. How-

ever, it appears that it was not popular enough to be maintained, and was eventually removed from

the code base [Qadeer, 2020]. In the design space between automatically inferred and manually

spelled-out loop invariants, Boogie chooses an interesting middle ground: It infers some simple

loop invariants and combines them with those written explicitly by the user [Barnett et al., 2006].

The KeY project [Ahrendt et al., 2016] uses the Java Modeling Language (JML) to specify the

behavior of Java functions and provides an Eclipse IDE plugin to verify Java programs. It features

a Symbolic Execution Debugger [Hentschel et al., 2014].

Rupicola [Pit-Claudel et al., 2022] and its predecessor Fiat [Delaware et al., 2015] are extensible,

user-configurable compilers from functional programs written in Coq to Bedrock2 and Bedrock1

code, respectively. The user specifies the compilation strategy and lets the framework derive the

120

code accordingly. The Isabelle Refinement Framework [Lammich, 2015, 2017] applies similar tech-

niques in Isabelle/HOL. In contrast, our framework is designed for users who already have a clear

idea of what low-level code they want and feel that configuring the compiler until it emits the

desired low-level code would be more work than just writing down the code.

The Verified Software Toolchain (VST) [Cao et al., 2018] is a tool based on Hoare logic and

separation logic, implemented in Coq, for proving correctness of C programs. It uses a similar

style of stepping through a program line-by-line, using Coq’s context of hypotheses to keep track

of the symbolic state. Instead of using Hoare triples {𝑃}𝑐{𝑄} like VST, we use wp judgments of the

form ∀𝑠 . 𝑃 𝑠 ⇒ wp 𝑐 𝑠 𝑄 , so the precondition is already separated and can more easily be moved

into Coq’s context of hypotheses. In VST, one has to recompile the source program and reload the

whole proof each time one wants to change the source program, and sometimes, it is hard to relate

the positions in the proof script to positions in the source code.

Like Bedrock2 (which our Live Verification framework targets), CakeML can also be used to

create end-to-end-verified software-hardware stacks [Lööw et al., 2019]. All their program veri-

fication happens at the ML level, whereas we believe that certain performance-critical pieces of

software need to be written in more imperative and low-level languages, which is what our frame-

work enables.

One goal of building our Live Verification framework was to make it easier to verify efficient

source programs that are compatible with the Bedrock2 ecosystem, to create end-to-end-verified

software-hardware stacks. A similar end-to-end-verified software-hardware stack was also built

by the CakeML team [Lööw et al., 2019]. Instead of a low-level C-like language, they use ML as

their source language, so they need to spend less work on the verification of the source programs,

because they are already much closer to the desired functional high-level specification, but need

to spend more effort on turning ML programs into efficient low-level programs in their CakeML

compiler optimizations [Kiam Tan et al., 2019].

Why3 [Filliâtre and Paskevich, 2013; Bobot et al., 2015] is a tool for interactive development

and verification of programs. It provides a programming and specification language calledWhyML

and can also be used as an intermediate language to verify C, Java, and Ada programs. It discharges

its verification conditions to automated as well as interactive external theorem provers.

CAPS [Chaudhari and Damani, 2015, 2014], which stands for Calculational Style of Program-

ming, uses a tactic-based approach to derive programs from specifications and uses Why3 as its

backend. It uses Why3 as an automated theorem prover and maintains the invariant that as the

user constructs more and more of the program, the program constructed so far is always proven

correct.

121

5.8 Conclusion and Future Work

We have presented a tool for verifying low-level programs using the Coq proof assistant, in a way

that continually provides a concise representation of the current symbolic state as the user writes

the program. Additionally, our tool stands out by its support for diff-based loop invariants, its

option to allow users to extend the proof automation with domain-specific procedures, its small

trusted code base that does not include the tool itself, and its compatibility with the Bedrock2

ecosystem that enables end-to-end proofs, which also check that the assumptions that the different

tools make about each other are compatible.

In terms of proof automation and usability, we feel that it is an improvement over the previous

Bedrock2 program logic and other approaches in Coq, but compared to more mature tools like

Why3 or Dafny, there is still a lot of room for improvement, which is to be expected, because

Why3 has been under active development for over 20 years [Filliâtre, 2009] and Dafny for over 15

years [Barnett, 2009].

The eventual goal of our line of research is to turn software verification into an enabler of

more efficient software development, considering the overall cost of development, testing, and

debugging. In particular, we hope that the constantly updated display of a symbolic state can

assist the programmer when writing programs. For tiny examples like computing the minimum of

three numbers without flipping the direction of the comparisons by accident, we have experienced

the feeling that indeed, the display of the symbolic state made us more productive at writing this

(admittedly highly trivial) program. For more complex programs, the tool is certainly useful for

proving correctness, but we believe that in addition, it can also be useful merely for knowing what

snippet to write next, but in the current state of the tool, the frequently failing verification of side

conditions constitutes a distraction that hampers this dimension of usefulness.

It seems to us that the size of the biggest case study in Bedrock2 [Erbsen et al., 2021] was mostly

bottlenecked by the lack of automation and usability of the program logic. Similar limitations

apply to other Coq-based C verification tools like e.g. VST [Cao et al., 2018] as well. With our live-

verification framework, we hope to make a step towards more convenient verification of low-level

code in Coq, eventually enabling bigger end-to-end verified stacks.

122

5.9 Listing of Notations

In this glossary, we give semi-formal definitions of all notations used in the code examples. For

each notation (or group of notations), we point to a section that explains it and also indicate the

Coq file where the precise definition can be found. Snippets in typewriter font are literal parts of

the syntax of the notation, while names in 𝑖𝑡𝑎𝑙𝑖𝑐𝑠 are placeholders.

Specification of a function § 5.3.1.3, LiveVerif/src/LiveVerif/LiveProgramLogic.v

.**/ uintptr_t 𝑓 𝑛𝑎𝑚𝑒(uintptr_t 𝑎𝑟𝑔1, ..., uintptr_t 𝑎𝑟𝑔𝑁) /**#

ghost_args := 𝑔ℎ𝑜𝑠𝑡1 ... 𝑔ℎ𝑜𝑠𝑡𝑀;

requires 𝑡 𝑚 := 𝑃𝑟𝑒;

ensures 𝑡 ′ 𝑚′ 𝑟 := 𝑃𝑜𝑠𝑡 #**/ /**.

The first line of this notation is chosen to be compatible with C function signatures. Note that

since uintptr_t is currently the only supported type, it is a literal part of the notation and cannot

be replaced by anything else. 𝑎𝑟𝑔1, . . . 𝑎𝑟𝑔𝑁 are the function argument names, and𝑔ℎ𝑜𝑠𝑡1, . . . 𝑔ℎ𝑜𝑠𝑡𝑀

are ghost arguments (whose types are usually inferred by Coq, but can also be annotated explicitly

like in (𝑔ℎ𝑜𝑠𝑡𝑖: 𝑀𝑦𝑇𝑦𝑝𝑒𝑖), where 𝑀𝑦𝑇𝑦𝑝𝑒𝑖 can be any Coq type). 𝑃𝑟𝑒 is the precondition, and it

can refer to the binders 𝑡 and𝑚, which stand for the event trace and memory before the function

call. 𝑃𝑜𝑠𝑡 is the postcondition, and in addition to 𝑡 and𝑚, it can also refer to 𝑡 ′ and𝑚′, which stand

for the event trace and memory after the function call, and if the function has a return value, to

a binder 𝑟 representing that return value. It roughly expands to the following formula, which is

parameterized over the function environment 𝑒:

𝜆𝑒. ∀𝑎𝑟𝑔1 . . . 𝑎𝑟𝑔𝑁 𝑔ℎ𝑜𝑠𝑡1 . . . 𝑔ℎ𝑜𝑠𝑡𝑀 𝑡 𝑚 , Pre⇒ wp 𝑒 fname(𝑎𝑟𝑔1, . . . , 𝑎𝑟𝑔𝑁) 𝑡 𝑚 (𝜆 𝑡 ′𝑚′ 𝑟 . Post)

There is also a variant of this notation with a void return type, where the ensures clause only takes

𝑡 ′𝑚′ instead of 𝑡 ′𝑚′ 𝑟 .

123

Providing the next C snippet § 5.3.1.5, LiveVerif/src/LiveVerif/LiveProgramLogic.v

.**/ 𝑠𝑛𝑖𝑝𝑝𝑒𝑡 /**.

a tactic notation to provide the next snippet of C code. Typically, we

write the .**/ at the end of the preceding line, and fill in whites-

pace between 𝑠𝑛𝑖𝑝𝑝𝑒𝑡 and the /**. The 𝑠𝑛𝑖𝑝𝑝𝑒𝑡 is parsed using a cus-

tom grammar for C snippets, and passed as an argument to the tac-

tic next_snippet, which applies the appropriate weakest-precondition

rule, and then repeatedly applies the step tactic to solve the side con-

ditions.

Providing the next C snippet without automation § 5.4.8.3, LiveProgramLogic.v,

.**/ 𝑠𝑛𝑖𝑝𝑝𝑒𝑡 /*?. the same as .**/ 𝑠𝑛𝑖𝑝𝑝𝑒𝑡 /**., but without running the step tactic

Bullet-point list of separation-logic clauses § 5.3.1.3, bedrock2/src/bedrock2/SepBulletPoints.v

<{ * 𝑐𝑙𝑎𝑢𝑠𝑒1

...

* 𝑐𝑙𝑎𝑢𝑠𝑒𝑁−1

* 𝑐𝑙𝑎𝑢𝑠𝑒𝑁 }>

stands for (sep 𝑐𝑙𝑎𝑢𝑠𝑒1 ... (sep 𝑐𝑙𝑎𝑢𝑠𝑒𝑁−1 𝑐𝑙𝑎𝑢𝑠𝑒𝑁) ...), where sep

is the standard separating conjunction (usually written as ∗ in the lit-

erature)

Bullet-point list of sepapp clauses § 5.4.1.2, 5.4.2, bedrock2/src/bedrock2/SepappBulletPoints.v

<{ + 𝑐𝑙𝑎𝑢𝑠𝑒1

...

+ 𝑐𝑙𝑎𝑢𝑠𝑒𝑁−1

+ 𝑐𝑙𝑎𝑢𝑠𝑒𝑁 }>

stands roughly for (sepapp 𝑐𝑙𝑎𝑢𝑠𝑒1 ... (sepapp 𝑐𝑙𝑎𝑢𝑠𝑒𝑁−1 𝑐𝑙𝑎𝑢𝑠𝑒𝑁) ...),

where sepapp means separating append (section 5.4.1.2)

Marker hypotheses § 5.4.4, LiveVerif/src/LiveVerif/PackageContext.v

____ 𝑠𝑐𝑜𝑝𝑒𝑘𝑖𝑛𝑑 ____ in a proof goal, marks the beginning of a scope of kind 𝑠𝑐𝑜𝑝𝑒𝑘𝑖𝑛𝑑

Referring to hypotheses by pattern Figure 5.4c, bedrock2/src/bedrock2/find_hyp.v

#(𝑝𝑎𝑡𝑡𝑒𝑟𝑛)
returns the name of the first hypothesis that matches 𝑝𝑎𝑡𝑡𝑒𝑟𝑛, which

may contain ?? placeholders

Heapletwise separation logic § 5.3.1.8, bedrock2/src/bedrock2/HeapletwiseHyps.v

𝑚1 */ 𝑚2

𝑚 |= 𝑃

disjoint union between two heaplets (pieces of memory)

heaplet𝑚 satisfies predicate 𝑃 , defined as (𝑃 𝑚)

124

Notations for bounded integers § 5.3.1.3, 5.5.8.2, bedrock2/src/bedrock2/WordNotations.v

\[𝑤]

/[𝑧]

^+ ^- ^*

interprets a word𝑤 as an unsigned integer, returning a ℤ

coerces a ℤ into a word by dropping the more significant bits

addition, subtraction, multiplication on word

List notations § 5.3.1.4, deps/coqutil/src/coqutil/Datatypes/ZList.v

ℓ[𝑖]

ℓ[𝑖 := 𝑥]

ℓ[:𝑖]

ℓ[𝑖:]

ℓ[𝑖: 𝑗]

[|𝑥1; 𝑥2; ...; 𝑥𝑁 |]

ℎ :: 𝑡

𝑎 ++ 𝑏

𝑖-th element of list ℓ

ℓ with its 𝑖-th element replaced by 𝑥

the first 𝑖 elements of ℓ

ℓ with its first 𝑖 elements skipped

the slice of ℓ from index 𝑖 (inclusive) to index 𝑗 (exclusive)

list literal

list cons

list append

Potentially less-well-known standard Coq notations

∼𝑃
?𝑥

𝑎 ^ 𝑏

negation of proposition 𝑃 , defined as 𝑃 → ⊥
an evar (see section 5.2.5)

𝑎 raised to the 𝑏-th power

125

126

Chapter 6

Simplification of Expressions Describing

Symbolic State

6.1 Problem

In automated program verification tools that never show their internal proof state to the user, it is

not too much of a problem if symbolic expressions representing program state become somewhat

big, as long as the prover can handle them. For interactive program verification tools, however,

which display the current symbolic state to the user after each command of the source program, it

is important that this state is kept concise and readable.

For example, in the memset function, which initializes each byte of a byte array at address a

whose initial value is a list of bytes bs to a given constant b, the loop invariant says that before the

i-th loop iteration, the contents of the byte array are
1

List.repeatz \[b] \[i] ++ bs[\[i]:]

That is, the array is initialized to the desired value up to index i, but still contains the original

values between index i and the end of the array. The loop body stores the value b at address

a + i. The proof automation
2
applies a lemma whose conclusion says that the list now equals

the previous list up to index 𝑘 , followed by a singleton list containing b, followed by the previous

list starting at 𝑘 + 1, where the index 𝑘 equals (storeAddress - baseAddress) / elementSize, and

storeAddress = a ^+ i, baseAddress = a, elementSize = 1.

1
See section 5.9 for an explanation of the notations used in this example

2
See also section 5.3.1.9

127

So, the updated list appearing in the symbolic state now looks as complicated as

(List.repeatz \[b] \[i] ++ bs[\[i]:])[:\[a ^+ i ^- a] / 1] ++

[|\[b]|] ++

(List.repeatz \[b] \[i] ++ bs[\[i]:])[\[a ^+ i ^- a] / 1 + 1:]

Clearly, such an expression should not be presented to the user. Instead, it should be simplified to

List.repeatz b i ++ [|b|] ++ bs[i + 1:]

and then further to

List.repeatz b (i + 1) ++ bs[i + 1:]

Onemight hope that by addingmore specialized lemmas for commonly appearing special cases,

one could get simpler resulting symbolic states. For instance, a lemma specialized to the case

where the element size is 1 could get rid of the division, and a lemma specialized to the case where

storeAddressmatches the pattern (baseAddress ^+ elementSize ^* _) could simplify the expres-

sions appearing in the list slicing expressions, but maintaining such a (potentially ever-growing)

collection of common patterns and encountering undesirable behavior whenever a programmer

writes a program that is not part of the anticipated common patterns seems undesirable.

Instead, let’s see how a more principled and general term simplification mechanism for this

kind of expressions can be implemented.

6.1.1 Going Beyond Rewrite Rules: The Need for Custom Procedures

One might hope that all required simplifications can be expressed as rewrite rules, which could

then be fed into a generic rewrite engine. For the above example, this might be the case, but if we

slightly generalize the simplifications required in the example, simple rewrite rules do not suffice

anymore, as two subterms of the above examples illustrate:

To simplify (a ^+ i ^- a) into i, one might add a rewrite rule, but as soon as we encounter an

example where the two expressions that cancel each other out are a bit further apart, such as e.g.

(((a + x1) + x2) + x3) - (y1 + (y2 + (y3 + a)))

the rule would not apply anymore. Similarly, if (List.repeatz b i) and [|b|] appear as the left

and right argument of a ++, a rewrite rule can merge them into List.repeatz b (i + 1), but if

they are buried deeper inside other concatenation expressions, such as e.g.

(xs1 ++ (xs2 ++ (xs3 ++ List.repeatz b i))) ++ ((([|b|] ++ ys1) ++ ys2) ++ ys3)

128

a simple rewrite rule does not work anymore. The situation could be slightly improved by first

canonicalizing the associativity, but then, each rewrite rule that replaces an (xs ++ ys) by a cs

would also need to be added in a second form that replaces all (xs ++ (ys ++ zs)) by cs ++ zs.

One might argue that these more complex examples where simple rewrite rules do not work

are artificial and do not appear typically appear during program verification, and one might even

be able to support this claim by giving a series of verified programs that all are verifiable with

simplification that only uses simple rewrite rules. But such reasoning misses an important point:

Verification tools should work well not only on proofs that work, but also on proofs that do not

work (yet), because that is the steady state of proof development. In particular, if one simplification

that the user expected to trigger did not trigger because the user forgot to include some precondi-

tion that is required for the simplification, and further symbolic manipulation is applied to a not

fully simplified expression, the expression can quickly grow quite complex, and in order to help

the user figure out why the proof does not work, it is really important that the verification tool

also can simplify as much as possible on the bigger expression – even if this expression will never

occur anymore during verification of the final proof where everything works.

6.2 Related Work

Coq ships with two solutions for rewriting:

The first, autorewrite3, performs rewrites based on hint databases that the user can populate

with rewrite rules. The rewrite rules may have side conditions, and arbitrary tactics can be regis-

tered to solve these side conditions. However, it has a long-standing bug
4
that makes it basically

unusable: If there are two rewrite opportunities for a given rewrite rule, but for the first one, the

side condition prover fails, the rewrite rule is not tried for the second opportunity.

Coq’s second rewriter is rewrite_strat5, which provides a small DSL to describe the desired

term traversal order, and also supports hint databases like autorewrite. It does not have the

autorewrite bug, but instead a series of other bugs and limitations that make it undesirable to

use.
6

Gross et al. [2022] developed a performant rewriter in Coq based on reification, which was

successfully used in Fiat Cryptography [Erbsen et al., 2019], but it only supports executable Boolean

side conditions that only contain compile-time-known constants.

3
https://coq.inria.fr/doc/V8.19.0/refman/proofs/automatic-tactics/auto.html#coq:tacn.autorewrite

4
https://github.com/coq/coq/issues/7672

5
https://coq.inria.fr/doc/V8.19.0/refman/addendum/generalized-rewriting.html#strategies-for-rewriting

6
See e.g. Coq issues 10848, 10934, 12053, 13708, 13712, 15093, 15701, and 16471

129

https://coq.inria.fr/doc/V8.19.0/refman/proofs/automatic-tactics/auto.html#coq:tacn.autorewrite
https://github.com/coq/coq/issues/7672
https://coq.inria.fr/doc/V8.19.0/refman/addendum/generalized-rewriting.html#strategies-for-rewriting

All the three above Coq solutions have the additional limitation that they are purely based on

rewrite rules and cannot be combined with custom rewrite procedures as section 6.1.1 wishes.

Though I have not used themmyself, Isabelle simprocs [Urban, 2019, section 5.5] seem to satisfy

the requirements described before: The simplifier (simp) proceeds through terms bottom-up [Nip-

kow et al., 2024, section 9.1.2] and applies rewrite rules from the user-specified rewrite databases

as well as user-specified simplification procedures (simprocs). Its only drawbacks are that it is not

available in Coq, and that the user-specified simplification procedures need to be implemented in

ML, which is fairly low-level compared to Ltac or Ltac2 that we will use in our solution.

6.3 Attempt 1: Ad-Hoc Rewrites and Simplifications

The first attempt was to interleave invocations of Coq’s basic rewrite tactic (which performs one

rewrite at a time) with invocations of its ring_simplify tactic to simplify word expressions like

(a ^+ i ^- a) into i.

However, this approach is too slow, because each rewrite and each procedure that gets applied

to a subterm of the whole term needs to register in the proof term where it has been applied, and

the way this is encoded in Coq requires copying the whole surrounding term.

To illustrate the problem, consider the following proof, where the repeated application of f

stands for some big term, and the lemma g_is_h says forall x, g x = h x:

Lemma some_rewrite: forall x, f (f (f (f (g x)))) = f (f (f (f (h x)))).

Proof.

intros.

rewrite g_is_h.

reflexivity.

Qed.

Its proof term is

eq_ind_r (fun n : nat ⇒ f (f (f (f n))) = f (f (f (f (h x))))) eq_refl (g_is_h x)

and uses the lemma eq_ind_r of type

forall [A : Type] [x : A] (P : A → Prop), P x → forall y : A, y = x → P y

As we can see, to indicate where to apply the g_is_h lemma, the P argument of eq_ind_r is instan-

tiated with a lambda that repeats the whole surrounding term (the f applications), and if we were

to run many rewrites in a row, each of them would repeat the whole context around the term being

rewritten, leading to quite big proof terms and slow performance.

130

6.4 Attempt 2: E-Graphs

Another problem is that it is not always clear what rewrites will lead to the smallest and nicest

possible simplified terms. Using e-graphs [Nelson, 1980] can help: We can start by representing the

term to be simplified as an e-graph, and then repeatedly apply rewrites (which unifies e-classes)

until saturation or a predefined limit is reached. Then, using a bottom-up dynamic-programming

approach, we can extract the smallest representative of each e-class. As a size measure, we can

either use the number of AST nodes, or we can also customize it to weigh definitions that we do

not like higher, so that they are less likely to appear in the simplified term. With my colleague

Thomas Bourgeat, I implemented this approach as a Coq plugin [Bourgeat, 2023, Chapter 7], based

on the egg e-graph implementation by Willsey et al. [2021].

However, a significant limitation of the egg implementation is that it does not support theory

combination. In particular, it was unclear how one would use a linear integer arithmetic solver to

discharge side conditions of the rewrite rules in this setup.

6.5 Current Solution

To avoid the problem of big proof terms described in section 6.3, we implement a bottom-up term

traversal procedure in Ltac2 that applies rewrite rules and custom simplification procedures at

each node, and produces an equality proof term on-the-fly.
7
Each rewrite rule invocation in the

proof term still repeats its arguments, but there are no more context terms needed for each rewrite.

Specifically, the simplifier returns a value of type

Ltac2 Type res :=

[ResNop(constr) (* new and old term *)

| ResConvertible(constr) (* new term *)

| ResRewrite(constr, constr) (* new term, proof *)].

where ResNop means that no simplifications were made (and the original term, a constr, is just

returned for convenience and uniformity), ResConvertible means that the term can be simplified

to a new term according to Coq’s reduction rules, which does not require an explicit proof term, and

ResRewrite means that rewrites were made that result in a new term stored in the first argument

and that it is justified by a proof term stored in the second argument of the constructor.

7
See https://github.com/mit-plv/bedrock2/blob/800a8a15c599/bedrock2/src/bedrock2/bottom_up_simpl.v for the

source code

131

https://github.com/mit-plv/bedrock2/blob/800a8a15c599/bedrock2/src/bedrock2/bottom_up_simpl.v

Using congruence lemmas like ∀𝑓 𝑔 𝑥 𝑦, 𝑓 = 𝑔 ⇒ 𝑥 = 𝑦 ⇒ 𝑓 𝑥 = 𝑔 𝑦 and a few specialized

versions of it, the procedure combines results as it travels up the term.

At each node, it invokes a customizable local simplifier. At the moment, the following local

simplifiers are invoked:

• local-follow_eqs_until-const_val e checks if the expression e is a variable, and if so,

whether there is an equation of the form e = rhs in the context with rhs a constant or again

a variable, and continues following equations until a constant is reached. If rhs is not a

constant, it fails, because inlining all variables risks leading to big terms.

• local-zlist_simpl e pushes down list expressions _[_:], _[:_], _[_] into list concatena-

tions, canonicalizes the associativity of concatenation, but also tries for each pair of list ex-

pressions appearing left and right of a concatenation whether they can be merged into one

expression.

• local-ring_simplify parent_kind e applies Coq’s ring_simplify procedure on e, but only

if the parent_kind is different from e’s kind, where kind is one of WordRingExpr, ZRingExpr,

OtherExpr, to make sure it is not uselessly applied on subterms whose parents it will get

applied to later anyways.

• local-ground_number_simpl e simplifies e if it can be simplified to a constant number.

• push_down_len e pushes down list length expressions into other list expressions.

• local-word_simpl e pushes down word.unsigned (injection of bounded integers intoℤ) into

word operations.

• local-nonring_nonground_Z_simpl e runs a simple canceler for divisions.

6.6 Preliminary Evaluation

The simplification procedure described above runs after each addition of a C snippet in our Live

Verification framework. During its development, we have applied the policy that processing one

snippet should usually not take more than 1 second, and 3 seconds at the most, and so far, the

simplification procedure has taken up a considerable share of that budget, but has rarely exceeded

it, and thus appears usable for our Live Verification framework, whereas Attempt 1 (section 6.3)

did not clear that performance bar, and Attempt 2 (section 6.4) was not powerful enough because

it did not support side-condition solving adequately.

132

Part II

Case Studies

133

Chapter 7

Overview

The goal of this part of the dissertation is to support two claims:

• The techniques presented in Part I lead to proofs that can be composed into end-to-end

theorems where the intermediate specifications cancel out.

• Systems with end-to-end theorems where the intermediate specifications cancel out are eas-

ier to audit because the number of lines of code that need to be audited is lower than it would

be in traditional unverified systems or in systems where only some individual components

were verified.

To support the first claim, I will present three systems that were built using techniques of

Part I and explain the guarantees that their end-to-end theorems prove. The three systems are

an internet-of-things lightbulb (chapter 8), a cryptographically authenticated garage door opener

(chapter 9), and a RISC-V trap handler that emulates the multiplication instruction in software on

processors that do not implement it in hardware (chapter 10).

To support the second claim, I will, in chapter 11, present LOC counts that compare the number

of lines of code that one needs to read in order to audit our end-to-end verified systems (i.e., the top-

level theorem and all definitions it references) to the number of lines that one would have to read in

order to audit the systems if they were unverified (i.e., the number of lines of the implementations).

Interestingly, even though all our previous publications on these case studies include LOC

counts, none of them made the comparison described above. The reason might be that in the rush

before the submission deadlines, we considered that collecting all the spec code that the end-to-end

theorem references would be toomuchwork. But merely counting all the lines to be audited should

not be harder than actually auditing them, and since we claim that our systems are easy to audit,

one would expect that it should also be easy to count the number of lines. And indeed, we will see

135

in chapter 11 that this expectation can be confirmed, in the sense that I was able to produce TCB

LOC counts with reasonable effort (though with some caveats such as e.g. that I excluded library

code).

However, during this line-counting activity, many not-so-clear-cut decisions will have to be

made, e.g. which lines exactly do we count, do we count very standard definitions from Coq’s

standard library such as e.g. addition on ℤ or list concatenation, how many lines of code would

one have to audit in a system with cryptographic code not synthesized and proven correct by fiat-

crypto, and finally, one needs also to take into account that the amount of effort that needs to be

spent per line of code to understand and audit it can vary greatly depending on the kind of code.

So, instead of presenting just one number per case study, I will present several different numbers

and discuss the caveats of their interpretation.

136

Chapter 8

IoT Lightbulb1

This chapter presents the first case study we built on top of the Bedrock2 framework: A bare-

metal embedded system that reads network packets and turns on and off a lightbulb based on the

network packets’ contents. We chose this extremely simple application because wewanted to work

in a bottom-up fashion and get a fully proven end-to-end theorem, spanning software as well as

hardware, before venturing into more complicated applications, but, as we will see in the further

chapters, the Bedrock2 ecosystem can also support more complicated applications. This case study

uses omnisemantics (chapter 2), the Bedrock2 compiler (chapter 3), as well as riscv-coq (chapter 4).

Section 8.1 starts with a review of related work, setting the agenda on how we want to do

better, section 8.2 gives an overview of the system and the end-to-end theorem we proved about it,

followed by section 8.3 describing some implementation choices and a conclusion in section 8.4.

8.1 Related Work and Concepts

Formal verification of computer systems has already been done many times since the 1980s, so to

motivate our work, we start by reviewing the qualities and shortcomings of prior work, and also

use this discussion as an opportunity to define a few important concepts.

8.1.1 Verifying Implementations Against a Spec

A little more than ten years ago, formal verification suddenly “broke out” as visibly practical for

computer systems, and quite a range of projects have demonstrated its use. The seL4 project [Klein

1
This chapter of the dissertation contains text copied and adapted from the PLDI’21 paper (and previous, unpub-

lished longer versions of it) I co-authored with Andres Erbsen, Joonwon Choi, ClarkWood, and AdamChlipala [Erbsen

et al., 2021].

137

et al., 2009] set the pace in the systems community, by proving (in the Isabelle/HOL proof assistant)

that a microkernel implemented in C satisfies a logical specification, using a proof structured in

layers. This is a great achievement, and yet, someone might ask “but what if the spec is wrong?”,

and use this argument to dismiss this project and formal verification as a whole. We believe that

this is as wrong as claiming that a computer system has been “proven correct”: all that formal

verification does is to reduce the amount of code whose bugs could invalidate a crucial property

from a large, hard to audit implementation, to a short, easier to audit specification, and this alone

makes it a worthwhile endeavor.

But there are more questions to be asked: for instance, what if the compiler used to compile

the seL4 microkernel has a bug?

8.1.2 Tool Verification

One way to address the above question would be to prove, once and for all, that the output of the

compiler always satisfies a specification of compiler correctness. For instance, this was done for

CompCert [Leroy, 2009a], a C compiler verified in Coq.

However, the seL4 authors wanted to use gcc, so they used an alternative approach to tool

verification called translation validation: They translate the C code to a graph (and prove this

translation correct in the Isabelle/HOL proof assistant), and they translate the binary produced by

the gcc compiler to the same graph format (with a translation correctness proof in the HOL4 proof

assistant), and then run an SMT solver to check that the two graphs are equivalent. This allows

them to safely dismiss the question of compiler correctness, but a few questions remain: What if

the SMT solver has a bug? What if the two proof assistants make subtly different assumptions

about the semantics of these graphs? And on the application side, what if the processes running

on seL4 make assumptions about the system call semantics that subtly differ from the assumptions

in seL4’s spec? To our knowledge, these questions were not addressed in seL4, and this leads us to

the concept of integration verification.

8.1.3 Integration Verification

When integrating two components, we need to ensure that they make the same assumptions about

the interface between them. Formal verification provides a prime solution: it enables us to write

down the interface specification in a format that is both human- and machine-readable, and to

verify that both components adhere to it. We believe that formal verification research should

138

not only focus on the verification of individual components, but also much more on this kind of

integration verification.

Examples of work towards this direction include the Verified Software Toolchain (VST) [Appel

et al., 2014], which verifies C programs against logical specifications in Coq, and compiles these

programs using CompCert [Leroy, 2009a]. VST and CompCert use the same semantics of C written

down in Coq, so the risk of undetected incompatibilities is greatly reduced.
2

Similarly (but with a different, abstraction-layer-based proof approach), the CertiKOS [Gu et al.,

2016] verified operating system implemented in C integrates in a verified waywith a fork [Gu et al.,

2015] of the CompCert compiler, and there is work [Mansky et al., 2020; Xia et al., 2019] trying to

integrate it with VST.

8.1.4 Alternatives to Integration Verification

The term integration verification is derived from the term integration testing, and one might ask

why the latter is not sufficient to ensure correct integration of a system’s components. The fun-

damental challenge is to achieve not only full line coverage (that is, each line of code has been run

during testing), but also to achieve full input space coverage (that is, the system behaves correctly in

each possible scenario), which is infeasible due to combinatorial explosion (except for very small

systems). Thorough testing with strategies geared towards detecting corner cases might reveal

many bugs, but especially in a security setting, one must assume that a determined adversary will

find the one scenario that tests happen to have missed.

8.1.5 Push-Button Integration Verification versusModularity andGuaranteed

Reusability

A promising technique for integration verification that is more automated than the projects sur-

veyed in section 8.1.3 and ours is concolic testing [Godefroid et al., 2005], which combines testing

with symbolic analysis of the conditions that drove execution down particular paths. The system

can use solvers to invent new test inputs that exercise new control-flow paths, and this symbolic

analysis can eventually certify that all relevant paths have been explored in full generality. An ex-

ample of a verification tool built on top of this style of symbolic execution is Vigor [Zaostrovnykh

et al., 2019], which uses the Klee symbolic-execution engine [Cadar et al., 2008]. Vigor verifies

2
But unfortunately, we are not aware of any work that made use of this specification sharing to prove a combined

theoremwhere the C semantics “cancel out” and the theorem only mentions application logic and assembly semantics.

139

all the software implementing particular network functions, even including the operating system,

thus combining testing-style end-to-end thoroughness with verification-style coverage guarantees.

A similar style of symbolic execution is used in the Hyperkernel project [Nelson et al., 2017]

and in the Nickel information-flow-checking tool [Sigurbjarnarson et al., 2018], and improved and

generalized into the Serval verification platform [Nelson et al., 2019]. The most interesting design

choice in this line of work is to rearchitect software systems to avoid unbounded loops or data

structures, so that formal-verification tools can work without extra proof-oriented annotations

that programmers would otherwise need to write. Serval performs symbolic evaluation on differ-

ent assembly languages, so it successfully solves the integration verification problem between the

source language and the compiler, because it directly verifies the output of the compiler rather

than its input.

While these approaches offer a high degree of automation, they depend on SMT solvers, which

are unverified tools with large code bases, and their verification is not modular : Whenever we

change one part of the system, we need to rerun the whole verification, whereas the projects

described in section 8.1.3 have the benefits of modular verification: each significant component

has a purely local specification, mentioning its own inputs and outputs but not those of other

components; and we can tinker with each component implementation and have a guarantee that

the system will continue to work without needing to revisit the rest of the system, as long as the

old specification continues to hold.

An additional interesting point in the design space is the Parfait project [Athalye, 2024], built

on top of Knox [Athalye et al., 2022], which proves that a hardware security module (HSM) does

not leak more information than its high-level specification already leaks. They use different tools

for different layers, thus achieving improvedmodularity compared to the projects described before,

but they still do not specify all intermediate layers: For instance, they only prove that the processor

correctly executes the two concrete HSMs they consider, and verification of future systems might

reveal bugs in the processor that were provably never triggered by their two HSMs. Moreover, they

use several different unverified verification tools, so the soundness of their results also depends on

the correctness of these tools, and on correct translation of the specifications into their respective

input languages. For instance, CompCert specifies RISC-V assembly semantics in Coq, but they also

need assembly semantics in Rosette, so they hand-translated them into Rosette, and one needs to

trust or carefully audit both of these semantics in order to be able to trust their result.

140

8.1.6 Height of the Verified Stack

As every layer of a software stack could contain bugs, it is desirable that the verification effort

spans a stack height as large as possible.

When it comes to starting the verification as high up as possible, a notable project is Ever-

est [Bhargavan et al., 2017], which develops a TLS stack to span the assurance gap from high-level

cryptographic security to low-level software correctness and security. For each layer, they choose

the most suitable verification tool, and they do not invest into tool verification or integration ver-

ification, so at the end, in order to assure oneself that the claimed results hold, one has to audit a

considerably large trusted code base.

And when it comes to ending the verification as low as possible in the stack, another project

worth mentioning is CompCertMC [Wang et al., 2019], which extends CompCert [Leroy, 2009a]

to compile to machine code running on a realistic machine model rather than just to an assembly

language with pseudo instructions and a machine model with an unbounded stack. However, we

have not yet seen this work being integrated with projects building on top of CompCert, such as

VST and CertiKOS.

When thinking about extending the verified stack at the bottom, the interface between software

and hardware is both important and subtle. The question is not just “what if the hardware contains

bugs?” but crucially also “what if the software and the hardware make different assumptions about

how the instructions should behave?”

8.1.7 Verified Software-Hardware Integration

We are aware of three projects having addressed the above questions. All of them achieve inte-

gration verification by connecting all components within one proof assistant, and verify all tools

(except the proof assistant itself) as well, thus reducing the trusted code base required to audit to

just their top-most and bottom-most specifications and the proof assistant.

In the late 1980s, the CLI stack [Bevier et al., 1989] connected a Pascal-like language to a 32-

bit microprocessor design described in minimalistic register-transfer language. The purpose-built

languages were modeled using interpreters and omitted input or output facilities. The processor

implementation is described as a loop that executes one instruction per iteration and includes, for

example, waiting for responses to memory requests [Hunt, 1989]. The verified software for this

stack included arithmetic on large integers and a solver for the mathematical game Nim, and a

successor of the processor was fabricated using gate-array technology.

141

The Verisoft project [Alkassar et al., 2008a], begun in the early 2000s, connects a program cor-

rectness framework for programs written in a language they call C0 to a compiler targeting their

purpose-built VAMP processor architecture. To our knowledge, no complete physical demonstra-

tion system including input and output was ever built with this stack, and we also are not aware of

any full-system proof against a short, natural application specification in terms of input and output

by the hardware-software stack treated as a black box. The closest we are aware of [Daum et al.,

2010] related a correctness proof of a small automotive-control C0 application to the correctness

proof of an operating system, plugging into a proved stack including compiler and processor, but

there is no discussion of a short full-system theorem, even though it seems to us that this should

have been within close reach for them.

In work begun roughly 15 years after the Verisoft project started, the CakeML optimizing com-

piler [Kiam Tan et al., 2019] was extended with a backend to a new, purpose-built instruction

set called Silver [Lööw et al., 2019]. This time the software stack does support input and out-

put, but the complete stack still does not. Instead, external calls for file-system access and stan-

dard input/output are compiled into reads and writes of a memory buffer. The stack is run on a

field-programmable gate array (FGPA), with a commodity microprocessor connected to the same

memory to initialize input and collect output (in contrast to our experiments using a freestanding

system). With this setup, several nontrivial programs are executed: examples include word count,

sorting, and even compiling a “hello word” program using a cross-compiled copy of CakeML itself

(in 4 hours).

Unfortunately, none of the three above projects performs what we call realistic I/O: CLI only

provides proofs about values written into the main memory, while the other two do communicate

to the external world, but not in a standard way, though Verisoft might have gotten close [Alkassar

et al., 2007].

Moreover, all of them use their custom-built ISA instead of a real-world ISA, raising the question

whether their techniques could be adopted in larger, more real systems.

8.1.8 Verified Hardware Optimizations

Once we have established that the software and the hardware make the same assumptions about

the semantics of the ISA, and we have a proof methodology available at the hardware level, this

enables us to replace the processor by an optimized processor, and as long as it satisfies the same

ISA specification, this optimization did not increase the size of the trusted code base.

The projects described in the previous section make use of this advantage to various degrees: In

142

the Silver processor of CakeML, the most sophisticated optimization is of modest complexity and

deduplicates circuitry for calculating the next program-counter value after different instructions.

CLI uses a multicycle processor, while Verisoft’s processor includes more interesting optimizations

like out-of-order execution.

8.1.9 Contributions

In the previous sections, we have introduced various evaluation criteria for verified systems, and

we summarize them in Table 8.1. It turns out that none of the existing prior work meets all of them

in a way we find satisfactory. Therefore, we set out to build, one more time in the line of work

of systems verification, an end-to-end verified systems stack, and we believe to be the first system

achieving all the above criteria.

In particular, we build a simple verified systems stack whose verified height ranges from a sim-

ple high-level application I/O behavior specification all the way down to a hardware description

language, using only verified tools (except for a small trusted proof kernel) and with verified in-

tegration at each layer boundary, resulting in an end-to-end theorem about the system’s behavior

which is a mathematical object that can be checked by Coq’s trusted proof kernel.

The stack consists of a modular ecosystem of proved components, each of which can be modi-

fied individually, without having to revisit the rest of the system. It includes hardware optimizations

such as a pipelined processor, and it is the first project in this space to use a real-world ISA (such

as RISC-V) and realistic I/O (such as memory-mapped I/O) to communicate to the external world.

8.2 Overview

As shown in Figure 8.1, our physical system prototype consists of an FPGA that runs a verified

RISC-V program on a verified processor and communicates with an unverified network interface

card (NIC) over a serial peripheral interface (SPI), as well as with a power switch over two general-

purpose I/O (GPIO) pins.

The software uses memory-mapped I/O (MMIO) to access these interfaces, and the correctness

of the system is expressed in terms of an event trace of MMIO loads and stores.

143

Key:

✓ met

∼ partially met

✗ not met

− not applicable
s
e
L
4
[
K
l
e
i
n
e
t
a
l
.,
2
0
0
9
]

V
S
T
+
C
e
r
t
i
K
O
S
[
M
a
n
s
k
y
e
t
a
l
.,
2
0
2
0
]

C
o
m
p
C
e
r
t
M
C
[
W
a
n
g
e
t
a
l
.,
2
0
1
9
]

E
v
e
r
e
s
t
[
B
h
a
r
g
a
v
a
n
e
t
a
l
.,
2
0
1
7
]

S
e
r
v
a
l
[
N
e
l
s
o
n
e
t
a
l
.,
2
0
1
9
]

V
i
g
o
r
[
Z
a
o
s
t
r
o
v
n
y
k
h
e
t
a
l
.,
2
0
1
9
]

C
L
I
s
t
a
c
k
[
B
e
v
i
e
r
e
t
a
l
.,
1
9
8
9
]

V
e
r
i
s
o
f
t
[
A
l
k
a
s
s
a
r
e
t
a
l
.,
2
0
0
8
a
]

C
a
k
e
M
L
+
S
i
l
v
e
r
[
L
ö
ö
w
e
t
a
l
.,
2
0
1
9
]

T
h
i
s
c
a
s
e
s
t
u
d
y

Applications

OS and/or drivers

Source language

Assembly

Machine code

HDL

Integration verification ∼ ∼ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

One proof assistant ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓

Modularity ∼ ✓ ✓ ∼ ✗ ✓ ✓ ✓ ✓ ✓

Standardized ISA ✓ ✓ ✓ ✓ ✓ ✓ ∼ ✗ ✗ ✓

HW optimizations − − − − − − ∼ ✓ ✗ ✓

Realistic I/O ✓ ∼ ✗ ✗ ∼ ✓ ✗ ∼ ✗ ✓

Table 8.1: Comparison of the height of the verified stack and other evaluation criteria. We ac-

knowledge that a single symbol and a few explanatory sentences can never accurately summarize

the actual verification achievements, and we refer to the references in the column headers for a

more detailed discussion.

144

FPGA

NIC

Ethernet

power switch

Figure 8.1: System demo

8.2.1 The End-to-End Theorem

Our end-to-end theorem looks as follows:
3

Theorem end2end_lightbulb: forall mem0 t state,

bytes_at (instrencode lightbulb_insts) 0 mem0 →
Semantics.Behavior (p4mm mem0) state t →
exists t': list (string * word * word),

KamiRiscv.KamiLabelSeqR t t' ∧
prefix_of t' goodHlTrace.

It proves that for all initial memories mem0, if mem0 contains the encoded lightbulb instructions at

address 0 (the first address the processor will execute), and we observe that the 4-stage pipelined

processor p4mm connected to memory mem0 steps to some state and produces the I/O trace t while

doing so, then that trace can be mapped to an I/O trace t' consisting of triples of an action label

of type string and an address and a value of type word, and that this trace t' is a prefix of a trace

satisfying the high-level lightbulb-specific predicate goodHlTrace. Only the two action labels "ld"

and "st" are allowed by goodHlTrace, and they stand for memory-mapped input (load) and output

(store), respectively. We need prefix_of because goodHlTrace only allows traces observed immedi-

ately before the application (re-)enters the main event-handling loop, but the Semantics.Behavior

hypothesis allows execution up to an arbitrary state, which might be in the middle of the execution

3
See https://github.com/mit-plv/bedrock2/blob/2223b2a2f7/end2end/src/end2end/End2EndLightbulb.v for its Coq

proof.

145

https://github.com/mit-plv/bedrock2/blob/2223b2a2f7/end2end/src/end2end/End2EndLightbulb.v

of the event-handling-loop body. In section 9.1, we will see a more elegant solution that does not

require prefix_of, but the always and eventually operators.

Note that the value of (instrencode lightbulb_insts) can be computed and printed as a hex-

dump inside Coq, which involves running the verified compiler inside Coq, while other compilers

verified in Coq such as CompCert [Leroy, 2009a] and Œuf [Mullen et al., 2018] mix propositions

and opaque proofs into the compile function, which makes it impossible to run them inside Coq

and requires a less well-trusted proof erasure process outside the Coq proof kernel called extraction

to translate the Coq code to OCaml, and there is no way for them to import back into Coq the fact

that running the compiler returns a certain output.

In order to convince oneself that the bytes_at assumption holds in the real world, one has

to audit the (unverified) Verilog code which creates the memory module and makes sure that

its lower addresses are initialized with the machine code bytes output by Coq when computing

(instrencode lightbulb_insts).

And in order to convince oneself that Semantics.Behavior indeed describes the behavior of

the processor running on the FPGA, one has to understand the semantics of the Kami HDL [Choi

et al., 2017], and be convinced that the Kami-to-Bluespec transliterator, the Bluespec-to-Verilog

compiler, and the synthesis tools work as expected.

And finally, in order to make sense of this theorem, one has to understand its conclusion, which

consists of a straightforward mapping KamiRiscv.KamiLabelSeqR from the Kami trace format to the

simpler trace format, and of the goodHlTrace predicate described in section 8.2.2.

We would like to emphasize that compared to other verification projects, only requiring the

three items described above to be understood and trusted is very minimal. In particular, no source-

language semantics need to be trusted in order to trust this theorem.

8.2.2 The Trace Predicate

An I/O trace is a list of triples, where ("ld", addr, value) means that the system issued an

MMIO-load request with address addr on the memory bus and got value as the reply, whereas

("st", addr, value)means that the system issued an MMIO-store request with address addr and

value value.

Our specifications stand for sets of legal I/O traces. For readability, we write them in the style of

regular expressions (while, beneath the syntactic sugar, retaining the expressive power of higher-

order logic), with notation ||| for union, +++ for concatenation, ^* for Kleene closure, and one to lift

a single I/O operation into a trace predicate (accepting only length-one traces with that operation).

146

Our top-level spec (“good high-level trace”) is defined as

Definition goodHlTrace: list OP → Prop :=

BootSeq +++ ((EX b: bool, Recv b +++ LightbulbCmd b) ||| RecvInvalid ||| PollNone) ^*.

Every trace accepted by goodHlTrace starts with a series of magic incantations BootSeq required

to initialize the Ethernet card. After that, goodHlTrace requires that the trace only consists of one

of three kinds of interactions: A command to turn on or off (as indicated by the Boolean b) the

lightbulb was received, and an MMIO write to the general-purpose I/O (GPIO) pin connected to

the power switch was issued; or an invalid packet was received and no further action was taken;

or the network card was polled, but no new data was available. These high-level trace predicates,

in turn, are defined as follows:

Definition Recv (cmd : bool) (t : list OP) : Prop :=

exists (packet : list byte),

lan9250_recv packet t ∧
lightbulb_packet_rep cmd packet.

Definition LightbulbCmd (cmd : bool) : list OP → Prop := gpio_set 23 cmd.

Definition RecvInvalid : list OP → Prop :=

(fun t ⇒ exists (packet : list byte),

lan9250_recv packet t ∧
∼ (exists (cmd : bool), lightbulb_packet_rep cmd packet)) |||

(lan9250_recv_packet_too_long) |||

(any+++spi_timeout).

Definition PollNone : list OP → Prop := lan9250_recv_no_packet.

To get an idea of how, after some more unfolding, all definitions eventually boil down to MMIO

reads or writes, let us also look at the definition of gpio_set:

Definition GPIO_DATA_ADDR: word := word.of_Z (0x1001200c).

Definition gpio_set(i: Z)(value: bool): list OP → Prop :=

EX v: word,

one ("ld", GPIO_DATA_ADDR, v) +++

one ("st", GPIO_DATA_ADDR, (

let cleared := word.and v (word.of_Z (Z.clearbit (2^32-1) i)) in

word.or cleared (word.slu (word.of_Z (Z.b2z value)) (word.of_Z i)))).

147

It states that setting the i-th GPIO pin requires first reading the current value of all 32 pins and

then writing the same value again, but with the i-th bit cleared using an AND mask and then set

to the desired value using an OR mask.

8.3 Implementation

8.3.1 An Infinite Loop Despite Using a Termination-Sensitive Program Logic

The semantics of the Bedrock2 source language are termination-sensitive. This is a boon and a

bane at the same time: on one hand, it enables us to prove that programs terminate, which is

an important correctness property. Compare this to Bedrock [Chlipala, 2013], where inserting

an infinite loop is used as a backdoor to skip proving correctness in corner cases such as out-of-

memory exceptions, and auditing the proofs requires going through the source code and collecting

all potentially infinite loops. On the other hand, this design choice also means that we cannot

reason about programs that enter infinite loops intentionally, which is the case in our lightbulb

example: at the top level, this application consists of an infinite loop polling for network packets

and processing one-by-one. However, it seems that all infinite loops we would care about are top-

level event loops, so instead of changing the semantics of the Bedrock2 source language, we write

a small event-loop compiler that expects input programs of the following form:

init();

while (true) loop();

where init and loop are two program-specific functions (like main in C programs). It emits RISC-V

code that calls init, then loop, and then jumps back to calling loop again, forever.

Based on this, we can state an invariant ll-inv on a RISC-V machine that is independent of the

semantics of the source language, and holds at the beginning of each loop iteration. The invariant

asserts that the I/O trace produced by the machine so far is accepted by the goodTrace predicate,

as well as several other conditions on the RISC-V machine state such as that the program counter

points to the instruction calling loop, that the memory contains the right instructions, that the

stack pointer points to the beginning of the stack, etc. However, to prove that ll-inv holds at the

beginning of each loop iteration, we need an invariant holding after each RISC-V instruction, and

we can obtain one by asserting that the machine eventually reaches a state satisfying ll-inv.

Instantiating this invariant proof with the concrete goodTrace specification for the lightbulb,

and combining it with the refinement proofs between the RISC-V Coq semantics, the Kami speci-

148

fication processor and the pipelined Kami processor, we obtain an end-to-end theorem describing

the behavior of the IoT lightbulb just in terms of the I/O trace produced by the pipelined Kami

processor, independent of all the intermediate interfaces such as the source-language semantics,

RISC-V Coq semantics, etc.

8.3.2 Interfacing Hardware and Software

The Bedrock2 compiler and the Kami processor are proven correct against very different RISC-V

specifications: the compiler uses the software-friendly specification introduced in chapter 4, while

the Kami processor is proven against a single-stage processor, where the abstract ISA is instantiated

to the one for RISC-V RV32I. In order to combine the compiler and the Kami processor in an

end-to-end proof, we need to prove that these two RISC-V specifications are compatible. Since

both specifications have a notion of step to handle an instruction, filling the gap between the

spec processor and the RISC-V specification can be regarded as proving the correctness of the

instantiated ISA in hardware over the RISC-V software specification.

8.3.3 Bridging Two Different Styles of Semantics

Because the Bedrock2 compiler and the Kami processor started as two individual projects, not only

do they use two different RISC-V specifications, but these two specifications also use different styles

of semantics.

The compiler uses what we call omnisemantics (see chapter 2), that is, predicates cstep1 and

csteps for single and multiple steps of execution, respectively, of type

CState → (CState → Prop) → Prop

where CState is the machine state including the interaction trace produced so far, and csteps s0 P

means that all (nondeterministic) executions starting in state s0 do not crash and reach states

satisfying P.

In Kami, however, there is no concept of crashing: a processor always keeps doing something

(or nothing) in the next cycle, and the semantics are defined by predicates kstep1 and ksteps of

type

KState → KState → Prop

where ksteps s0 s1means that running the processor from a starting state s0 can lead to the state

s1 (but potentially also to other states).

149

Now, if wewanted to do a traditional refinement proof between the Kami spec processor and the

compiler’s definition of RISC-V semantics, we would have to prove that for each Kami execution,

there exists a corresponding execution in the compiler’s RISC-V semantics. But this would be

impossible, because the compiler’s semantics talk about all executions at once, whereas the Kami

semantics only give us one execution, which is not sufficient to prove something about all of them.

To close this gap, our proof bridging the Kami semantics and the compiler semantics uses a

different structure: it starts by proving that if we have a cstep1 from the compiler as well as a

kstep1 from Kami, then the state ks2 in which Kami lands can be simulated in the compiler’s

RISC-V semantics by some rs2:4

Theorem kstep1_sound: forall ks1 ks2 rs1 P,

related ks1 rs1 →
kstep1 ks1 ks2 →
cstep1 rs1 P →
related ks2 rs1 ∨
exists rs2, related ks2 rs2 ∧ P rs2.

Note that contrary to what one might expect, this proof assumes both a Kami execution and an

execution in the compiler’s RISC-V semantics.

In order to lift this theorem to multiple steps, we cannot use the compiler’s csteps predicate,

because if we assume a csteps and a ksteps, they might disagree on the number of steps, and

while Kami’s predicate could be modified to fix a number of steps, the compiler’s cannot, because

it talks about all executions at once, and each execution might perform a different number of steps

depending on nondeterministic choices. However, by using an invariant on the compiler’s view of

the machine state, we can state (and prove) that the Kami spec processor only has behaviors which

are also behaviors of the compiler’s RISC-V semantics as follows:

Theorem ksteps_sound: forall (inv: CState → Prop),

(forall rs, inv rs → cstep1 rs inv) →
forall ks1 ks2 rs1,

related ks1 rs1 →
ksteps ks1 ks2 →
inv rs1 →
exists rs2, related ks2 rs2 ∧ inv rs2.

The kstep1_sound theorem requires a simulation relation (related) between the two different

4
The left-hand side of the disjunction accounts for the fact that the Kami proofs do not guarantee liveness.

150

RISC-V machine states. Since both the spec processor and the RISC-V specification have the same

granularity in terms of the number of semantic steps required to handle an instruction, here the

relation can almost be equality, though we must translate between different types used in the two

semantics.

8.3.4 I/O Throughout the Stack

So far we have mostly emphasized vertical modularity. For instance, we could swap the imple-

mentation of a layer such as the compiler or the processor for a different implementation, and the

specifications at the layer boundaries guarantee that we need not revisit the other layers of the

system. However, some dimensions of variation across systems are orthogonal to that decompo-

sition. One natural example is which peripheral devices are available and how to interact with

them. Every layer of our stack is parameterized by its relevant choices there, and we think of this

parameterization as horizontal modularity.

For our lightbulb case study, the processor communicates with the network card and the light-

bulb power switch through MMIO.

8.3.4.1 I/O in Bedrock2

In Bedrock2 source code, we use a syntactically distinct construct for MMIO. To keep the language

more general, we do not introduce a specific construct just for MMIO but rather a more-general

construct we call external calls, which appear as special functions callable like any others. The

semantics of the source language are parameterized over the behavior of these external calls. The

concept of external calls is a strict generalization of MMIO, not a relaxation of semantics: the

source-code-level verification condition for anMMIO external call still needs to restrict the address

to be within MMIO range.

The Bedrock2 program logic uses a verification-condition generator with the following defini-

tion to treat external calls (simplified assuming one argument and one return value):

vcgen((𝑥 = 𝑓ext(𝑒)), 𝑡,𝑚, ℓ,𝑄) :=

∃𝑣 . expr_evaluates(𝑚, ℓ, 𝑒, 𝑣) ∧

vcextern(𝑓ext, 𝑡, [𝑣],

𝜆𝑟 . 𝑄 ((𝑓 ,[𝑣],[𝑟])::𝑡,𝑚, ℓ [𝑥 := 𝑟]))

The predicate vcextern is a parameter of the semantics – for the lightbulb, we instantiate it with a

151

characterization of MMIO load and store operations and allowed address ranges in our platform.

Like vcgen, vcextern computes a precondition that is sufficient to guarantee that the postcondition

𝑄 received as input to vcextern holds after the call. An important difference between vcgen and

vcextern is that vcgen models deterministic steps, whereas vcextern needs to account for unknown

runtime inputs, which are represented using a universal quantifier in the definition of vcextern.

For example, an external call called "arbitrary" that requires exactly one nonzero argument 𝑏 and

can return any number less than 𝑏 would have the specification

vcextern("arbitrary", 𝑡, args, 𝑄) :=

∃𝑏. args = [𝑏] ∧ 0 < 𝑏 ∧ (∀𝑟 . 𝑟 < 𝑏 ⇒ 𝑄 (𝑟))

Note that when proving the proof obligation returned by vcextern, the programmer has to prove

𝑄 (i.e., verify the remainder of the program) for all possible 𝑟 .

8.3.4.2 I/O in the ISA Semantics

Our RISC-V specification is also parameterized over external interactions, implemented by giving

special treatment to loads and stores that fall outside the memory owned by the code running on

this processor. This special treatment records non-memory loads and stores in the I/O trace of

all externally visible behavior of the system, for which the end-to-end theorem will assert that

it satisfies the goodHlTrace property. In our instantiation of the ISA specification, the memory

footprint remains unchanged throughout execution.

The parametermodeling external interactions caused by an n-byte non-memory load, nonmem_load,

takes an address a, a machine state s, and (in the same style as vcgen and vcextern) a postcondition

Q, returning the proof obligation the compiler has to prove to make sure that Q holds after executing

the load instruction. Here is the instance for MMIO:

nonmem_load n a s Q :=

isMMIOAddr a ∧ isMMIOAligned n a ∧
∀ v, Q v (withLogItem (@mmioLoadEvent a n v) s).

It requires the compiler to prove that a is in the MMIO range, it is n-byte aligned, and the desired

postcondition holds for a machine state where the address and the unknown read value v have

been added to the I/O log. The same interface is also powerful enough to model direct memory

access (DMA), by recording memory-ownership changes in the I/O trace, but we do not make use

of this feature in the lightbulb application.

152

8.3.4.3 I/O in the Bedrock2 Compiler

Our compiler pipeline is parameterized over an external-calls compiler, which defines how to im-

plement each call with machine code. In the lightbulb example, it simply translates MMIOREAD and

MMIOWRITE calls to lw and sw instructions.

We prove our compiler correct for all possible implementations of external calls in a compo-

sitional manner, requiring the same correctness of the external-calls compiler as we are proving

about the whole compiler:

Lemma compiler_correct: ∀ compile_ext,

(∀ x fext a, correct compile_ext (x = fext(a))) →
(∀ program, correct (compile compile_ext) program).

Condition correct comp p says that feeding program p into the compilation function comp produces

position-independent code that takes any machine state satisfying the compiler invariant to some

machine state satisfying the compiler invariant and the postcondition of p (assuming no execution

of p from the given starting state can trigger undefined behavior).

Note that the postcondition has to be translated as well, because a source-level postcondition

𝑃 takes an I/O trace 𝑡 and a source-level state as arguments, whereas a target-level postcondition

takes a target-level state instead of a source-level state. We do so using a state-representation

relation 𝑅 between source and target states, translating the source-level postcondition 𝑃 into the

target-level postcondition 𝜆𝑡 𝑠tgt. ∃𝑠src. 𝑅(𝑠src, 𝑠tgt)∧𝑃 (𝑡, 𝑠src). If we wanted to support different trace
formats for the source and target languages, we could simply include the trace in the representation

relation and translate the source-level postcondition 𝑃 into 𝜆𝑡tgt 𝑠tgt. ∃𝑡src 𝑠src. 𝑅(𝑡src, 𝑠src, 𝑡tgt, 𝑠tgt) ∧
𝑃 (𝑡src, 𝑠src).

Verifying the External-Calls Compiler The correctness proof of the external-calls compiler (i.e.,

the proof of the main hypothesis of the last lemma) relies both on the compiler invariant and on

the source-level verification condition of external calls (vcextern). However, the main compiler

as well as correct are too general to know anything about the concept of MMIO, but they still

need to empower the correctness proof of the external-calls compiler to show that the loads and

stores emitted for MMIO do not modify application data or code. Therefore, the compiler invariant

includes not only administrative conditions regarding the stack and registers but also an external

invariant that the code emitted by the external-calls compiler can rely on andwhich the proof of the

main compiler takes as an abstract parameter. In our case study with MMIO only, it is sufficient to

use an external invariant that requires MMIO addresses not to overlap with the physical memory,

153

and vcextern requires the application programmer to show that the addresses are indeed within

the MMIO range (see section 8.3.4.1).

We must also provide a means to the main compiler to prove that it preserves the abstract

external invariant, and we do so by imposing the condition on the abstract external invariant that

it is preserved by all ordinary RISC-V instructions the main compiler uses (that is, in particular,

excluding lw and sw outside the physical memory).

We found these details to be a particularly tricky exercise in parameterization and “threading”

of invariants through a development. The solution we describe here relies on quantifying over

predicates (vcextern and the external invariant) and their properties, an example of how use of

higher-order logic enables modularity.

8.3.4.4 I/O in Hardware

I/O is encoded in Kami as invoking methods on an unspecified external module, which the se-

mantics tracks in a behavior trace. The processor itself does not distinguish ordinary memory

operations from MMIO. When the memory module is attached, it handles the loads and stores to

memory addresses but makes designated external method calls for the rest. This factoring appears

both in the pipelined processor and in the spec processor, making for an easy correctness proof by

modular refinement.

8.3.5 Pipelining and Instruction Memory Consistency

The RISC-V instruction-set specification does not require memory accesses for instruction fetching

to be sequentially consistent with data loads and stores. Concretely, a stale (cached or pipelined)

instruction might execute even though the corresponding memory location was overwritten by

a recent instruction. This is essential to enable simple pipelined designs, or even just simple in-

struction caches (while more sophisticated CPU designs can detect and handle such hazards, this

additional implementation complexity is almost always omitted in embedded processors).

The specification we use handles this by tracking a set of executable addresses XAddrs through-

out the execution. Whenever an instruction is fetched, undefined behavior is triggered if the fetch

address is not in XAddrs, and after each store, all written addresses are removed from the set of

executable addresses. The correctness proof of our compiler includes showing that the program

addresses remain executable throughout program execution. This in turn relies on external calls

not modifying the set of executable addresses, which in turn only holds if the program is calling

the external calls in accordance with their specification, which of course depend on the correctness

154

of execution of compiled code so far. This is yet another example of how correctness specifications

of interfaces between embedded systems’ components are intertwined in non-obvious ways that

are important for practical performance but are easily lost in academic simplifications (we believe

no other verified stack tackles this particular challenge).
5

8.4 Conclusion

We presented another step toward more complete end-to-end mechanized proof of systems com-

bining software and hardware, with small trusted code bases. Since our top-level theorem does not

reference any of the intermediate specifications, we can rule out a large class of potential integra-

tion bugs.

In order to focus on this kind of integration verification, we chose rather simple designs for the

individual components, so the work we presented here cannot yet fully answer the question how

our technique would scale if we replaced the individual components by more complex designs.

More complex designs would likely lead to more complex intermediate specifications, and since

we have not yet encountered any friction points in our specification style, we believe that it is

ready for use with more complex designs that need features such as direct memory access or,

more generally, external calls that acquire and release logical ownership of memory. On the other

hand, concurrent software execution (on multiple cores or in interrupt handlers) would require

considerable changes to our current approach.

Compared to past work, we emphasize building a freestanding digital system that uses realistic

I/O, an instruction set that is already widely used, and low-level coding patterns representative of

embedded systems. New challenges were raised for modularity of both the vertical (layering) and

horizontal (parameterization) kinds. We also found that tooling challenges with performant proof

automation in Coq dominated our development time, feeding a wishlist of mundane-sounding Coq

improvements.

It seems that these limitations must first be overcome to attain feasibility for any integration-

verification case study large enough to benefit genuinely from a modular architecture. Still, we

were able to complete the last conceptual ingredients in an end-to-end functional-correctness the-

orem that directly captures the I/O behavior of a very simple untethered embedded system.

5
Further, the RISC-V instruction FENCE.I could be used to resynchronize the instruction and data paths (usually

at considerable run-time cost), but like many embedded processors, our processor does not support this instruction –

it is treated as a no-op, and the specification is modified accordingly.

155

156

Chapter 9

The Garage Door: Foundational Integration

Verification of a Cryptographic Server1

This chapter reports on a case study on a bare-metal software stack that includes functional and

imperative languages, four qualitatively different compilers, optimized implementations of elliptic-

curve and addition-rotate-XOR cryptography, an Ethernet driver, UDP/IP networking, and utility

libraries along with a proof-of-concept application dubbed “the garage door opener”.

Our work is unique in achieving a machine-checked integrated correctness proof about all soft-

ware in a system by building on completely different reasoning methods in different subdomains.

Our demonstration system is based on a commercial SiFive FE310 micro-controller that runs

RISC-V (RV32IM) code in a bare-metal environment. This FE310 processor does not come with

a formal proof of correctness, so in this case study, the verification ends at the RISC-V level, and

in order to trust the system, one must trust that the FE310 micro-controller implements RISC-V

as specified by riscv-coq (chapter 4). The system consists of a server that listens for UDP packets

over Ethernet, responds to a session initiation with an X25519 elliptic-curve Diffie-Hellman key

exchange, and accepts a different packet type to complete the handshake and authenticate the user

whose authorized public key is specified in the system configuration. After successful authentica-

tion, a general-purpose digital output is driven based on the command from the received packet. In

the physical demonstrations, this output is connected to a motor controller that opens or closes a

toy garage door, which stands in for remotely managed real-world infrastructure such as a power

plant or the gates of a dam.

1
This chapter of the dissertation contains text copied and adapted from the PLDI’24 paper I co-authored with

Andres Erbsen, Jade Philipoom, Dustin Jamner, Ashley Lin, Clément Pit-Claudel, and Adam Chlipala [Erbsen et al.,

2024].

157

The specification is simple: successfully authenticated commands should drive the actuator,

while other input should be ignored. The required elliptic-curve mathematics are proven against

affine-coordinate formulas that fit on the back of a napkin, and the network packet formats are

specified by concatenating appropriate lists of bytes in a functional language. The bottom interface

is RISC-Vmachine code. Someone whowishes to understand and audit the statement of our system

theorem does not need to read definitions of the programming languages, APIs and ABIs, and

resource accounting we use that ensures that the system will not run out of memory, overwrite

code with data, or enter an infinite loop, because our statement does not include or reference any

definitions related to these concerns. The proof of our statement has to deal with all these concerns,

but the internal specifications all “cancel out” as we compose the subproofs.

Our implementation builds upon established Coq projects from each domain, reusing both

methods and artifacts when practical while extending each project as required for verified inte-

gration:

• Underspecification and unconditional requirements in internal specifications are encoded

using omnisemantics (chapter 2), andwe use simple separation logic as an assertion language

throughout the stack, even to specify compilers.

• We use the Bedrock2 compiler (chapter 3) and show that it can ingest hand-written code as

well as code generated by other compilers, bigger in size than in the lightbulb case study

(chapter 8).

• We use the Bedrock2 program logic [Erbsen et al., 2021] to verify the handwritten Bedrock2

code. We show that it can be applied to a significantly more complex specification, with

network input and output, compared to the lightbulb case study. We also add support for

reasoning about read-before-write aliasing.

• We adopt the Fiat Cryptography [Erbsen et al., 2019] framework, for generation of fast finite-

field arithmetic from templates expressed and proven as higher-order functional programs.

We extend it above with proofs of elliptic-curve-point representations structures and algo-

rithms, as well as below with a new verified backend targeting Bedrock2.

• We adopt the Rupicola [Pit-Claudel et al., 2022] code generator, deriving bare-metal-ready

Bedrock2 code from functional programs. We use it to build cryptographic code on top of

finite-field arithmetic and also integrate code for IP checksums from past work on Rupicola.

• We experimented with an interactive-proof-driven variant of relational compilation for gen-

erating code for algorithmically straightforward routines with memory-access-related rea-

soning bottlenecks such as ChaCha20.

158

Definition initial-conditions mach :=
0x20400000 = mach.(getPc) ∧
[] = mach.(getLog) ∧
mach.(getNextPc) = word.add mach.(getPc) (word.of_Z 4) ∧
regs_initialized (getRegs mach) ∧
(forall a : word32, code_start ml <= a < code_pastend ml → In a (getXAddrs mach)) ∧
valid_machine mach ∧
(imem (code_start ml) (code_pastend ml) garagedoor_insns *
mem_available (heap_start ml) (heap_pastend ml) *
mem_available (stack_start ml) (stack_pastend ml)) (getMem mach).

Theorem garagedoor_correct : forall mach : RiscvMachine, initial-conditions mach →
always run1 (eventually run1 (fun mach' ⇒ io_spec mach'.(getLog))) mach.

Figure 9.1: Top-level correctness theorem

The code of this case study is available at

https://github.com/mit-plv/fiat-crypto/tree/GarageDoorPLDI24

9.1 The End-to-End Theorem

Figure 9.1 shows the top-level correctness theorem. It uses the always operator as defined in

Figure 2.8a and the eventually operator as defined in Figure 2.7b. The predicate transformer run1

defines how executing one RISC-V instruction affects the RiscvMachine state: Given an initial state

and a desired postcondition, it returns a Prop that says what needs to be proven so that the desired

postcondition holds.

Our system theorem covers the execution from the first programmable RISC-V instruction on-

ward, but it relies on specific conditions on the initial state: the program counter must start out

pointing to the address where the verifiedmachine code begins, the ghost-state trace must start out

empty, the required amount of memory must be available, and so on. In return, our specification

guarantees liveness and crash-freedom: io_specwill always eventually hold (namely, at the end of

each iteration of the top-level loop) without any carve-outs for potentially running out of memory

or entering a silent infinite loop instead.

The eventually operator allows us to use a specification that only applies after having received

an entire network packet and potentially responded to it, but not in the middle of the transaction.

159

https://github.com/mit-plv/fiat-crypto/tree/GarageDoorPLDI24

Client
(unverified Python)

Server
(verified)

please send challenge

open/close command

challenge

init

compute
x25519

door

compute
x25519

compute x25519,
compare
update PRNG
(chacha20)

t1

t2

Figure 9.2: Client-server interaction. The bold black bars represent computation.

9.1.1 Network Protocol Specification

io_spec describes the network protocol and is depicted in Figure 9.2. It states that only traces are

accepted that consist of a series of protocol steps, where one step can be any of the following:

• Polling the network card timed out, returned no packet, or returned an invalid packet; or

• A packet was received that asked for a challenge, and a matching reply was sent; or

• A correctly authenticated packet was received that asked to open or close the garage door, a

corresponding MMIO request to the garage door was made, and a new seed for generating

the next challenge was derived from the current seed.

The contents of the network packets are described using simple functional-program expres-

sions. For example, here is our specification of the server’s first packet of a Diffie-Hellman hand-

shake featuring headers of network protocols and a fresh X25519 public key.

160

mac_remote ++ mac_local ++ be2 ethertype ++

let ip_hdr checksum := ih_const ++ be2 ip_length ++

ip_idff ++ [ipproto] ++ le_split 2 checksum ++

ip_local ++ ip_remote in

ip_hdr (IPChecksum.Spec.ip_checksum (ip_hdr 0)) ++

udp_local ++ udp_remote ++ be2 udp_length ++ be2 0 ++

garagedoor_header ++

x25519_spec x25519_ephemeral-secret Curve25519.M.B

Ethernet header

IP header

UDP header

Application data

The elliptic-curve payload of the packet is described using le_combine and le_split, which

convert between little-endian-ordered byte lists andℤ, as well as high-level Curve25519 definitions.

9.1.2 RISC-V Machine Code for Memory-Mapped I/O and Infinite Loops

The lowest-level language considered in this study is machine code for the RISC-V instruction

set. We follow the specification and reasoning strategy from chapter 8 but target the RV32IM

instruction set of a commercial microcontroller instead of a verified processor implemented on an

FPGA.

There are two kinds of operations that are not expressible in the Bedrock2 source language, and

are therefore implemented directly as simple RISC-V assembly macros emitted by what we call a

mini-compiler, in such a way that the proofs cover all the RISC-V code (as opposed to covering only

the part that is expressible in the source language, and relying on “trusted glue code in assembly”,

like other verification projects often do).

The first problem solved using a mini-compiler is that our use of memory-mapped I/O to talk

to devices is not directly expressible in the Bedrock2 source language. Instead, it is modeled by

external calls, and the Bedrock2 compiler is parameterized over a mini-compiler for these external

calls, which replaces each call by either a load or store assembly instruction. Thus, the proof of

the assembly fragment for an external call must centrally establish the relationship between the

low-level and high-level I/O-trace events, but it must also show that the MMIO store does not

accidentally overwrite compiler data structures.

Moreover, the top-level loop is an infinite loop, but the Bedrock2 source-language semantics

only accept terminating programs, so we use another verified assembly macro that takes the rela-

tive addresses of an init function and a loop-body function, emitting a program that first calls the

init function and then repeatedly calls the loop-body function forever. In this case, the specification

of the assembly fragment is parameterized over that of the loop body, and this specification states

161

specifiesused in

Modular
arithmetic

Finite-field
operations

Arithmetic
templates

RISC-V
machine code

Toplevel loop

Pure ANF
code

Bedrock2 Mont-
gomery ladder

fe_inv

Modular
inversion

Exponentiation
by squaring

Low-level
Gallina

Low-level
Gallina

Montgomery
X/Z ladder

Elliptic
curves

Garagedoor app

Chacha20
Bedrock2

Chacha20
spec

Garagedoor app spec

MMIO

SPI/Ethernet/IP/UDP
receive and transmit

IP checksum
Bedrock2

IP checksum
spec

External calls

QED

spec functional RISC-VBedrock2compiles toKey:

1

2

3

4

5

6

7

8

9

10 11

12 13

Figure 9.3: Overview of components and specifications

that any loop invariant is always eventually satisfied, leading to the top-level spec in Figure 9.1.

We reuse both mini-compilers from the lightbulb (section 8.3.1 and section 8.3.4.3). Their speci-

fications are considerably longer than their implementations, and the corresponding proofs require

correspondingly detailed ad-hoc reasoning, but there are no surprise obstacles or hard-to-bridge

abstraction gaps. These proofs are made feasible by the use of language-independent separation-

logic assertions and straightforward elementwise relations connecting Bedrock2 and RISC-V-level

I/O traces. These techniques enable us to compose an end-to-end theorem that covers ad-hoc as-

sembly code for functionality without language support, as opposed to relying on some unverified

assembly glue code or extending the syntax and semantics of the languages.

9.2 Different Techniques Combined

This section explains how different techniques were combined to create the implementation and

its end-to-end proof by means of a tour through Figure 9.3.

Its left-most column contains the Fiat Cryptography [Erbsen et al., 2019] pipeline (1⃝ and 2⃝)

that creates highly optimized code for modular arithmetic with constant modulus (2
255 − 19 in the

162

present case study) in administrative normal form (ANF), i.e. straight-line code where each line of

code assigns the result of one arithmetic operation to a fresh variable. The Fiat-Crypto-to-Bedrock2

compiler (3⃝, [Erbsen et al., 2024, Section 3.6]), implemented as a functional program in Gallina,

emits Bedrock2 code for it, as well as specifications using omnisemantics and separation logic that

state that the outputs in memory correspond to the functional programs specifying the behavior

of its input code.

The second column in Figure 9.3 implements modular inversion. Using Euler’s theorem, it

can be expressed as modular exponentiation, which can be shown (4⃝) to be implemented by a

functional square-and-multiply algorithm. Partially evaluating (5⃝) this algorithm for the compile-

time-known exponent using Coq’s simplification tactics leads to functional code (labeled as low-

level Gallina because it is close to the desired imperative code) which can be compiled (6⃝) to

Bedrock2 using the relational-compilation framework Rupicola [Pit-Claudel et al., 2022].

The main operation needed for the Diffie-Hellman key exchange is multiplication of a scalar

times an elliptic-curve point, shown in the third column of Figure 9.3. A functional implementa-

tion of the Montgomery-ladder algorithm is proven (7⃝) to conform to a high-level mathematical

specification, and also proven (8⃝) to be equivalent to a lower-level functional program that can

then be compiled (9⃝) to Bedrock2 using Rupicola. Rupicola is also used to generate (10⃝ and 11⃝)

Bedrock2 code for the Chacha20 pseudo random number generator and the CRC32 checksum.

The main garage door app is handwritten in Bedrock2, references all the other, generated

Bedrock2 code, and is compiled (12⃝) to RISC-V machine code using the Bedrock2 compiler.

The interaction with the network interface card and the garage door actuator is implemented

using memory-mapped I/O (MMIO), which is represented as external calls at the Bedrock2 source

level, and a mini-compiler (13⃝) that plugs into the main Bedrock2 compiler replaces these external

calls by RISC-V load and store instructions. Another mini-compiler emits the top-level loop, which

first calls an init function and then repeatedly and indefinitely calls a loop body function that

handles one garage-door request.

Finally, the statement of the end-to-end QED only references the RISC-V code (and the RISC-V

semantics) at the bottom and the high-level garage door spec (which references other high-level

specs) at the top, resulting in a concise theorem statement that is easy to audit, as we will see in

section 11.2.

To summarize what the combination of techniques described above means for the Bedrock2

compiler, consider Figure 9.4: It shows how the input of the Bedrock2 compiler in this case study

consists of handwritten code aswell as code generated by Rupicola and the Fiat-Crypto-to-Bedrock2

compiler, whose input in turn was generated by Fiat Cryptography.

163

Modular
arithmetic

Compiled
Bedrock2 code

Pure, straight-line
ANF code

Compiled
RISC-V

Compiled
Bedrock2 code

Functional code
in Gallina

Handwritten
RISC-V

Handwritten
Bedrock2 code

Elliptic-curve
math spec

QED

Fiat-Crypto

Rupicola
Fiat-Crypto-to-Bedrock2

Bedrock2 compiler

used in spec functional RISC-VBedrock2compiles toKey:

Figure 9.4: The Bedrock2 compiler compiles handwritten code as well as code generated by three

higher-level compilers.

164

Implementation Time

Ours (compiled with Bedrock2) 0.47s

Ours (compiled with GCC) 0.12s

Ours (substituting BoringSSL) 0.12s

Test client initialization only 0.10s

Table 9.1: Client-side performance measurements of different implementations

9.3 Evaluation

9.3.1 Performance

Instrumenting the server to measure its performance might be possible but a bit tricky. A much

easier measure is the time the client takes to execute one open or close command. In Figure 9.2,

this measure corresponds to 𝑡2 − 𝑡1, so it also includes the running time of the client program and

the network latency and excludes the computation that the server performs to check the client’s

request as well as the computation to update the pseudo random number generator, but it does

include computing one x25519 operation, so the measured time can serve as an upper bound for

the ballpark of one significant part of the server’s computation.

Table 9.1 shows the time it takes to execute the client for different implementations. The first

line is for our verified system. In the second line, instead of using the Bedrock2 compiler, the

Bedrock2 code was pretty-printed to C and compiled with GCC. As we can see, this leads to a

significant performance increase, which is not surprising because no particular effort (beyond a

simple register allocator) has been spent on compiler optimizations in the Bedrock2 compiler. On

the other hand, swapping the elliptic-curve code generated by Fiat Cryptography with code from

BoringSSL (a state-of-the-art crypto library used e.g. in the Chrome browser) leads to no measur-

able speed improvement, which suggests that the optimizations done in Fiat Cryptography are of

similar quality as the ones in BoringSSL. And finally, for comparison, the last line measures how

long it takes to start up the Python client and load its crypto library.

9.3.2 Effort and Project Size

To get a very rough estimate of the effort that was required to produce this case study, we give

LOC counts of new code developed for this case study as well as LOC counts of all code involved.

165

Component Technique LOC

Garage door app Bedrock2 1142

Transmit for LAN9250 Bedrock2 134

Bedrock2 library functions Bedrock2 418

ChaCha20 Rupicola 2591

Montgomery ladder Bedrock2 374

Montgomery ladder Rupicola 1062

Modular inversion simpl, Rupicola 467

FC-to-Bedrock2 compiler Generic Coq 7110

Invoking FC-to-Bedrock2 compiler Generic Coq 804

Total 14102

(a) New lines of code of this case study

Repository LOC

Coq stdlib 85495

bedrock2 7402

bedrock2Examples 2759

compiler 14911

Coqprime 5650

coqutil 11424

Rewriter 30124

riscv 6077

Rupicola 8198

Fiat Crypto 83861

Total 255901

(b) Required lines of code

Table 9.2: New and total lines of code of the project

9.3.2.1 Effort of This Case Study

Table 9.2a lists each component that was newly developed for this case study, which technique it

used, and its line count.

9.3.2.2 Size of the Code Base Including Dependencies

The source directory with our code and all dependencies contains over 3500 Coq files that amount

to almost 400KLOC, but focusing on that measurement is misleading, because many of these files

are from different research projects and not required for our project. To get a more representative

count without resorting to manually classifying 3500 Coq files as on-topic or off-topic, we rely on

the Coq command Print Libraries to list all files that the file containing our top-level theorem

transitively depends on, and then we only count the lines of code of these, which leads to the

numbers in Table 9.2b.

166

Chapter 10

Softmul: Verifying Software Emulation of an

Unsupported Hardware Instruction1

Some processors, especially embedded ones, do not implement all instructions in hardware. In-

stead, if the processor encounters an unimplemented instruction, an unsupported-instruction ex-

ception is raised, and an exception handler is run which implements the missing instruction in

software. Getting such a system to work correctly is tricky: The exception handler code must not

destroy any state of the user program and must use the control and status registers (CSRs) of the

processor correctly. Moreover, parts of the handler are typically implemented in assembly, while

other parts are implemented in a language like C, and one must make sure that when jumping from

the user program into the handler assembly, from the handler assembly into C, back to assembly

and finally back to the user program, all the assumptions made by the different pieces of code,

hardware, and the compiler are satisfied.

Despite all these tricky details, there is a concise and intuitive way of stating the correctness

of such a system: User programs running on a system where some instructions are implemented

in software behave the same as if they were running on a system where all instructions are imple-

mented in hardware.

This chapter shows how to formalize and prove such a statement in the Coq proof assistant, for

the case of a simple exception handler implementing the multiplication instruction on a RISC-V

processor.

1
This chapter of the dissertation contains text copied and adapted from a paper I co-authoredwith Thomas Bourgeat

and Adam Chlipala [Gruetter et al., 2024a].

167

10.1 Introduction

Assembly language is frequently regarded as the lowest level of software abstraction in software-

verification endeavors. However, the ISA (instruction-set architecture) semantics typically em-

ployed for software verification present an abstraction of the bare-metal ISA specifications, omit-

ting machine-level aspects of the ISA, like the configuration registers that control the intricate in-

terplay between the hardware’s intrinsic capabilities and themeticulously crafted firmware (a piece

of software) tasked with maintaining machine configurations and implementing high-privilege

handlers in charge of emulating unsupported instructions, as well as managing other forms of

low-level exceptions.

For example, in the RISC-V ISA, control and status registers (CSRs) shape the behavior and

functionality of the machine. These registers serve as a mechanism for controlling various aspects

of the processor’s operation, ranging from enabling or disabling specific features to controlling

where the machine jumps in case of interrupts and exceptions. These registers and the associated

exception handlers exert fundamental control over machine behaviors, so their improper configu-

ration can lead to undefined outcomes.

CSRs coupled with the handlers introduce an intriguing specification, implementation, and

verification challenge: while they are essential to determining the machine’s behavior, the CSRs

are themselves set and manipulated by software, and the handlers are themselves software.

There is a bit of a chicken-and-egg problem: We want to provide a nice and simple ISA abstrac-

tion, but to implement this abstraction and prove it correct, we have to write a trap handler and

want to compile parts of it with a compiler whose proof already relies on this abstraction that we

are supposed to implement, so how can we break the circularity?

One might be tempted simply to augment software-verification efforts with more detailed and

faithful ISA specifications. We eschew this approach. The simplified ISA abstractions commonly

employed are far more practical and productive compared to their cumbersome and heavier bare-

metal counterparts, and the intricate details of configurations and handlers should anyway remain

irrelevant to software or compilers higher up the stack.

We endeavor to disentangle the problem by focusing on a simplified-yet-illustrative instance:

the specification, implementation, and verification of a RISC-Vmachinewith software-implemented

multiply instructions.

Through this exploration, we aim to shed light on the interesting challenges posed by CSRs and

handlers and pave the way for a more coherent understanding of hardware-software interactions.

We will show that for this simple case we can indeed provide (with proofs!) the desired ab-

168

stractions, and we can leverage tools that were built on top of those nice abstractions to provide

the said abstractions without creating a circular conundrum. Our solution is to prove a helper

lemma that ports assembly program-correctness proofs against the nice and simple ISA semantics

to proofs against the detailed low-level ISA semantics. The helper lemma requires that the pro-

gram does not contain any unsupported instruction that would trigger the trap handler, and this

assumption gets discharged when we instantiate it with the concrete handler code produced by

the compiler. However, there are also parts of the handler whose semantics cannot be expressed

using the nice and simple ISA semantics, and we implement these manually in assembly and prove

their correctness directly at the assembly level.

Specifically, this chapter makes the following contributions:

• We propose a pleasantly simple specification for a RISC-V system equipped with a software

trap handler emulating unsupported instructions: User programs running on a systemwhere

some instructions are implemented in software in a trap handler should behave as if they

were running on a system with hardware support for these instructions.

• We implement such a trap handler by combining code in a C-like language with handwritten

assembly code, and we prove its correctness, in a mechanized and foundational way, down

to the binary machine code of the handler, combining symbolic-evaluation proofs at the C

level and assembly level with a compiler-correctness proof.

All the code is publicly available at https://github.com/mit-plv/softmul.

10.2 Overview

Wewant to show that amachine without hardware support for multiplication, but correctly config-

ured with an exception handler that implements multiplication in software, behaves like a machine

that supports multiplication in hardware. This theorem could then be used to simplify reason-

ing about programs running on a machine without hardware multiplication, because it saves the

burden of reasoning about the trap handler and instead makes it as easy as reasoning about the

specification with multiplication in hardware:

169

https://github.com/mit-plv/softmul

machine with CSRs and idecode

machine with
unused CSRs
and mdecode

helper machine with
no_mul invariant,

without CSRs

riscv-coq primitives
as axiomatized for
Bedrock2 compiler

any user code
in memory

asm handler asm handler

decoder & multiply
in Bedrock2

compiled handler
variant of

RISC-V spec

codecode

specification
preservation

runs on

compilation

Key:

①

②

③

④

⑤

⑥
⑦

⑧

⑨⑩

Figure 10.1: Overview diagram. The circled numbers are referenced in the text and do not stand

for any meaningful order.

match inst with

| Mul rd rs1 rs2 ⇒
x ← getRegister rs1;

y ← getRegister rs2;

setRegister rd (mul x y)

| ...

end

We use the RISC-V instruction-set architecture [Waterman and Asanovic, 2019; Waterman

et al., 2021], as formalized in riscv-coq (chapter 4). RISC-V splits the instruction set into several

extensions, each named with an uppercase letter. The base instruction set that every processor

must support is called I, and multiplication, division and modulo operations are in a separate ex-

tension called M that small embedded processors may choose not to implement, or to implement

in software by catching unsupported-instruction exceptions. In our proof-of-concept case study,

we pretend that the M extension only contains one single instruction, namely the multiplication

instruction, but we believe that support for the other instructions of the M extension could be

added in the same way.

The riscv-coq specification defines a set of roughly a dozen primitives such as getRegister,

setRegister, loadByte, storeByte, and then defines the semantics of each RISC-V instruction in

terms of these primitives. The semantics of each primitive is deliberately left unspecified in riscv-

coq, so that each application that needs a formal specification of RISC-V can instantiate these

170

primitives in a suitable domain-specific way.

Figure 10.1 presents an overview of our code (boxes ➄ and ➅) and specifications (the remaining

boxes). Our theorem uses two instantiations of the riscv-coq specification: One that implements

multiplication in hardware (box ➀) and one (box ➁) that implements it using a trap handler. Note

that since the configurability of this specification is first-class, i.e. expressed in Coq itself rather

than in some configuration files of the build process, there is no code duplication between the two

instantiations.

Parts of the exception handler (box ➅) are implemented in the Bedrock2 source language (see

section 3.2) and compiled (➆) using the Bedrock2 compiler, but the handler also needs some low-

level operations that are not expressible in the Bedrock2 source language and are therefore imple-

mented by-hand in assembly. That is, our handler (box ➄) starts and ends in handwritten assembly

and calls a compiled Bedrock2 function in the middle. Our proof combines a program-logic proof

about the Bedrock2 handler function, the compiler-correctness proof, and a proof about the assem-

bly instructions, guaranteeing that all these parts have been put together correctly, and the final

statement only mentions RISC-V semantics. All the other interfaces have been canceled out by

combining the proofs and thus are not part of the trusted code base anymore.

In addition to the two instantiations of the RISC-V semantics with and without hardware multi-

plication, our proof (but not the final statement) also uses a third instantiation (box ➃) which does

not have any CSRs (control and status registers, required by the exception mechanism). This third

instantiation fails (with undefined behavior) on all CSR-related instructions. For the compiler, an

axiomatization (box ➂) of this instantiation was chosen to simplify the proof, because the compiler

does not emit any instructions that depend on CSRs.

10.3 The Top-Level Theorem Statement

We can state the theorem (arrow ➉ in Figure 10.1) as follows:

Theorem softmul-correct: forall (initialH initialL: MachineState) (post: State → Prop),

runsTo (mcomp_sat (run1 mdecode)) initialH post →
R initialH initialL →
runsTo (mcomp_sat (run1 idecode)) initialL (fun finalL ⇒

exists finalH, R finalH finalL ∧ post finalH).

It is phrased as a specification-preservation2 statement: If a machine with hardware multipli-

2
It can also be seen as a small-step omnisemantics forward simulation as defined in chapter 2.

171

cation runs from an initial state initialH to states satisfying a postcondition post, then every

machine initialL with hardware multiplication, related to initialH by R, runs to a low-level state

finalL which, when translated back to a high-level state finalH, satisfies the same postcondition.

The theorem uses run1, which defines how one single instruction is executed:

Definition run1(decoder: Z → Instruction): M unit :=

pc ← getPC;

inst ← Machine.loadWord Fetch pc;

Execute.execute (decoder (LittleEndian.combine 4 inst));;

endCycleNormal.

It is parameterized over the instruction decoder, which is instantiated with mdecode (a decoder

that supports the multiplication instruction) in the hypothesis and with idecode (a decoder that

returns InvalidInstruction for the multiplication instruction) in the conclusion. The mcomp_sat

function, of type M unit → State → (State → Prop) → Prop, asserts that a monadic program

(consisting of primitives used in riscv-coq such as getRegister, setRegister, loadByte, etc.), ap-

plied to some initial state, satisfies a postcondition, and runsTo lifts it to an arbitrary (but finite)

number of steps.
3
The predicate R (Figure 10.2) is used to relate a high-level state (i.e. the state

of a machine that supports multiplication in hardware) to a low-level state (i.e. the state of a ma-

chine that implements multiplication in software using a trap handler), and it also contains all the

preconditions on how the low-level machine needs to be configured. That is, R asserts that the

two states have the same values for the registers and the program counter, and that the memory

(modeled as a partial map from 32-bit addresses to bytes) of the low-level machine contains all of

the high-level memory, as well as the instructions of the exception handler and some scratch space

that the exception handler can use as its stack (which must be available even if the main program

has used up all of its stack). To define the addresses at which the handler and the scratch space are

located, RISC-V defines some CSRs [Waterman et al., 2021] that our definition of R mentions:

• The CSR called MTVecBase is used to store the address of the trap handler (we use direct mode

where all exceptions set the PC to the same address, but RISC-V also has a vectored mode

where the PC is set to the base address in this register plus an offset corresponding to the

cause of the exception).

• The CSR called MScratch is a read/write register dedicated for use by machine mode, and we

use it to store the address of the end of the scratch space (we store the end address instead

of the start address because it is used like a stack that grows downwards).

3runsTo is defined like the omnisemantics eventually operator (Figure 2.7b).

172

Definition R(r1 r2: MachineState): Prop :=
r1.(regs) = r2.(regs) ∧
r1.(pc) = r2.(pc) ∧
r1.(nextPc) = r2.(nextPc) ∧
r1.(csrs) = map.empty ∧
basic_CSRFields_supported r2 ∧
regs_initialized r2.(regs) ∧
exists mtvec_base scratch_end,
map.get r2.(csrs) CSRField.MTVecBase = Some mtvec_base ∧
map.get r2.(csrs) CSRField.MScratch = Some scratch_end ∧
<{ * eq r1.(mem)

* mem_available (word.of_Z (scratch_end - 256)) (word.of_Z scratch_end)
* ptsto_bytes (word.of_Z (mtvec_base * 4)) softmul-binary }> r2.(mem).

Figure 10.2: The predicate relating high-level states (multiplication implemented in hardware) to

low-level states (multiplication implemented in software)

The memory (record fields r1.(mem) and r2.(mem) in Figure 10.2) is modeled as a finite map

from 32-bit words to bytes. In the setup used in this case study, no primitive (nor other operation)

changes the domain of that map. If an address outside of the domain of that map is accessed, the

memory-access primitives cause undefined behavior, i.e. the Prop returned by mcomp_sat (and thus

also the Prop returned by runsTo) becomes unprovable. This means that the runsTo hypothesis of

the top-level theorem assumes a basic form of memory safety of the user program, namely that it

does not access memory outside the domain of the memory. The separation-logic formula used in

Figure 10.2 ensures that the memory the user program can write to (r1.(mem)) is disjoint from the

scratch space and the handler code (second and third bullet points, respectively, in the separation-

logic formula). To remove this memory-safety assumption, one could prove memory safety for

the user program, i.e. that a runsTo holds for an arbitrary postcondition (the easiest choice would

simply be 𝜆s. True). In our setting, user code and handler code both run in machine mode, but in

more complex systems that feature both user mode and machine mode and also hardware-based

memory-protection support (e.g. by segmentation or virtual memory), the requirement to assume

or prove this basic memory safety for user programs could be lifted.

10.4 The Handler Code

The exception handler code is implemented partially in handwritten assembly and partially in

the Bedrock2 source language (see section 3.2) and compiled to bytes by the Bedrock2 compiler.

173

In order to prove the softmul-correct theorem, we use the correctness theorem of the Bedrock2

compiler, but note that the statement of the softmul-correct theorem does not depend on the

Bedrock2 language semantics or on anything related to the fact that we used the Bedrock2 compiler,

so the auditing burden for someone (who trusts the Coq proof checker) auditing our handler is

much smaller, because one does not need to worry about the compiler, its language semantics, and

its interaction with the assembly code.

The handwritten assembly of the handler is shown in Figure 10.3. Since we want our software-

emulated multiplication to behave as if it were implemented in hardware, we cannot make any

assumptions about the remaining space on the user program’s stack, nor about whether the stack

pointer sp contains any meaningful value at all. Therefore, we reserve a separate scratch space in

memory just for our handler, and we require that the CSR MScratch contains the address of that

scratch space.

As its first action (in handler_init), the handler has to store all 32 registers of the user process

by which it was triggered. It may only use registers that it has already saved, because otherwise it

would destroy state of the user program. We therefore resort to tricks such as temporarily storing

the user stack pointer in the MScratch CSR and then temporarily storing it in the return-address

register. Such tricks are easy to get wrong (and we did; see section 10.8.2).

After handler_init, the registers 3 to 31 are saved to the scratch space as well, and then the

Bedrock2-generated part is called by passing it the value of the CSR register MTVal, which contains

the invalid instruction that caused the exception, and a pointer to the scratch space in which we

saved the registers.

The Bedrock2 code (Figure 10.4) is written directly in Coq using the custom-notations feature, a

C-like syntax, and operator precedence as suggested by whitespace. It extracts the three 5-bit fields

of the instruction that indicate the two source registers (operands of the multiplication operation)

and the destination register, respectively, and then calls another Bedrock2 function rpmul that

implements multiplication in terms of addition, storing the result back into the scratch space. The

rpmul function iterates over the bits of the second operand while repeatedly doubling the first

operand, a technique sometimes called “Russian peasant multiplication.” Both softmul and rpmul

are verified using the Bedrock2 program logic. The spec of the former is given in Figure 10.5.

Its pre- and postcondition are expressed in terms of an (unused) I/O trace t and the memory

m, for which we assert a list of two separation-logic clauses (a word array corresponding to the

scratch space containing the register values, and a generic frame R for the rest of the memory).

After the Bedrock2 part, the handwritten snippet inc_mepc runs. It increases the CSR called

MEPC, which stores the address of the instruction that caused the exception. This increment is

174

Definition handler_init := [[
Csrrw sp sp MScratch; (* swap sp and MScratch CSR *)
Sw sp zero (-128); (* save the 0 register (for uniformity) *)
Sw sp ra (-124); (* save ra *)
Csrr ra MScratch; (* use ra as a temporary register... *)
Sw sp ra (-120); (* ... to save the original sp *)
Csrw sp MScratch; (* restore the original value of MScratch *)
Addi sp sp (-128) (* remainder of code will be relative to updated sp *)

]].

Definition call-mul := [[
Csrr a0 MTVal; (* argument 0: value of invalid instruction *)
Addi a1 sp 0; (* argument 1: pointer to memory with register values before trap *)
Jal ra (Z.of_nat (1 + List.length inc_mepc + 29 + List.length handler_final) * 4)

]].

Definition inc_mepc := [[
Csrr t1 MEPC;
Addi t1 t1 4;
Csrw t1 MEPC

]].

Definition handler_final := [[
Lw ra sp 4;
Lw sp sp 8; (* Bug: used to be ˋCsrr sp MScratchˋ, which is wrong if Mul sets sp *)
Mret

]].

Definition asm_handler_insts := handler_init ++ save_regs3to31 ++
call-mul ++ inc_mepc ++ restore_regs3to31 ++ handler_final.

Figure 10.3: Assembly part of trap handler (embedded in Coq)

175

Definition softmul := func! (inst, a_regs) {
a = a_regs + (inst>>15 & 31)<<2;
b = a_regs + (inst>>20 & 31)<<2;
d = a_regs + (inst>>07 & 31)<<2;
unpack! c = rpmul(load(a), load(b));
store(d, c)

}.

Definition rpmul := func! (x, e) ∼> ret {
ret = $0;
while (e) {
if (e & $1) { ret = ret + x };
e = e >> $1;
x = x + x

}
}.

Figure 10.4: Bedrock2 part of trap handler (using custom Coq notations to make it resemble C)

Instance spec_of_softmul : spec_of "softmul" :=
fnspec! "softmul" inst a_regs / rd rs1 rs2 regvals R,
{ requires t m :=

mdecode (word.unsigned inst) = MInstruction (Mul rd rs1 rs2) ∧
List.length regvals = 32 ∧
seps [a_regs |→ word_array regvals; R] m;

ensures t' m' := t = t' ∧
seps [a_regs |→ word_array (List.upd regvals (Z.to_nat rd) (word.mul

(List.nth (Z.to_nat rs1) regvals default)
(List.nth (Z.to_nat rs2) regvals default))); R] m' }.

Figure 10.5: Specification of softmul function

176

needed because upon returning from the trap handler (by the Mret instruction), executionwill jump

to MEPC, so we have to set it to one instruction (i.e., 4 bytes) past the multiplication instruction.

And finally, in restore_regs3to31 and handler_final, the values of the user program’s registers

are restored.

10.5 Combining the Program Logic Proofs and Compiler Cor-

rectness Proof

By combining the program-logic proofs about the two Bedrock2 functions with the compiler-

correctness theorem, we can prove that if we run the compiler within Coq to obtain a list of in-

structions mul-insts, these instructions satisfy the specification shown in Figure 10.6, a verbose

but unsurprising specification, laying out calling-convention details.

Lines 5 to 6 specify in which registers the arguments need to be placed, and line 14 requires

that at address a_regs, there is an array of 32 words that store the values of the registers of the user

program. Lines 18 to 20 state that after running mul-insts, the array at address a_regs storing the

registers is updated at its rd’th index with the result of multiplying its rs1-th and rs2-th elements,

and line 23 states that the new registers of the processor (not the ones saved in memory) only differ

from the original registers on the callee-saved registers.

Note that the conclusion on line 27 refers to the same machine as the conclusion of the top-

level theorem in section 10.3, namely the one described by (mcomp_sat (run1 idecode)), or box ➁

in Figure 10.1. However, to get there, two more proof steps (➇ and ➈) are needed: In order to

keep the Bedrock2 compiler (somewhat) general, it was not proven against a specific instantiation

of the riscv-coq semantics but against an axiomatization (box ➂) of the primitives used in riscv-

coq such as getRegister, setRegister, loadByte, etc. However, to keep the Bedrock2 compiler

proof manageable, the RISC-V machine-state representation appearing in that axiomatization was

hardcoded to a record type without CSRs (because compiler-emitted code never touches CSRs).

An additional problem requiring some proof effort to show compatibility is that the com-

piler correctness proof assumes a machine with hardware support for multiplication, but we want

to run its code on one without. By inspecting the code that it generated, we can see that it did

not output any multiplication instructions, but if it did, this would lead to a serious bug: If during

the execution of the trap handler, a multiplication instruction were encountered, the trap handler

would be recursively invoked again, infinitely many times.

We solve these two problems by introducing an intermediate helper machine (box ➃) that uses

177

1 Lemma mul-correct: forall initial a_regs regvals invalidIInst R (post: State → Prop)
2 ret_addr stack_start stack_pastend rd rs1 rs2,
3 word.unsigned initial.(pc) mod 4 = 0 →
4 initial.(nextPc) = word.add initial.(pc) (word.of_Z 4) →
5 map.get initial.(regs) RegisterNames.a0 = Some invalidIInst →
6 map.get initial.(regs) RegisterNames.a1 = Some a_regs →
7 map.get initial.(regs) RegisterNames.ra = Some ret_addr →
8 map.get initial.(regs) RegisterNames.sp = Some stack_pastend →
9 word.unsigned ret_addr mod 4 = 0 →
10 word.unsigned (word.sub stack_pastend stack_start) mod 4 = 0 →
11 regs_initialized initial.(regs) →
12 mdecode (word.unsigned invalidIInst) = MInstruction (Mul rd rs1 rs2) →
13 128 <= word.unsigned (word.sub stack_pastend stack_start) →
14 seps [a_regs |→ with_len 32 word_array regvals;
15 initial.(pc) |→ program idecode mul-insts;
16 mem_available stack_start stack_pastend; R] initial.(MinimalCSRs.mem) ∧
17 (forall newMem newRegs,
18 seps [a_regs |→ with_len 32 word_array (List.upd regvals (Z.to_nat rd) (word.mul
19 (List.nth (Z.to_nat rs1) regvals default)
20 (List.nth (Z.to_nat rs2) regvals default)));
21 initial.(pc) |→ program idecode mul-insts;
22 mem_available stack_start stack_pastend; R] newMem →
23 map.only_differ initial.(regs) reg_class.caller_saved newRegs →
24 regs_initialized newRegs →
25 post { initial with pc := ret_addr; nextPc := word.add ret_addr (word.of_Z 4);
26 MinimalCSRs.mem := newMem; regs := newRegs }) →
27 runsTo (mcomp_sat (run1 idecode)) initial post.

Figure 10.6: The correctness lemma of the compiler-generated part of the handler

the same state representation (without CSRs) as the compiler, and we prove an invariant no_mul

saying that the memory region marked as executable (which only includes the compiled handler

code in that instance) contains no multiplication instructions.

10.6 Correctness Proof of the Assembly Part

The assembly part of the handler is proven correct by induction over the runsTo hypothesis of

softmul-correct. If the machine with hardware multiplication executes any instruction besides

multiplication, we just need to show that after executing the same instruction on the machine with

software multiplication, the R judgment is preserved, but we can do that once-and-for-all by in-

specting each primitive of the riscv-coq spec (getRegister, setRegister, loadByte, etc.), instead of

analyzing themuch larger number of RISC-V instructions. The interesting case is when themachine

with hardware multiplication encounters a multiplication instruction, and we have to show that

178

Definition raiseExceptionWithInfo{A: Type}(isInterrupt exceptionCode info: t): M A :=
pc ← getPC;
(* hardcoded simplification: we only support machine mode and no interrupts *)
addr ← getCSRField MTVecBase;
setCSRField MTVal (regToZ_unsigned info);;
(* these two need to be set just so that Mret will succeed at restoring them *)
setCSRField MPP (encodePrivMode Machine);;
setCSRField MPIE 0;;
setCSRField MEPC (regToZ_unsigned pc);;
setCSRField MCauseCode (regToZ_unsigned exceptionCode);;
setPC (ZToReg (addr * 4));;
@endCycleEarly M t MM MW MP A.

Figure 10.7: Specification (in riscv-coq) of what hardware does in case of an exception

the machine with software multiplication steps to a related state. We do so by first symbolically

executing the specification of what the hardware does in case of an exception (Figure 10.7), which

boils down to setting some CSR fields and then setting the PC to the exception-handler address

found in the MTVecBase CSR.

After that, we symbolically execute the handwritten assembly instructions, using Coq’s proof

context to keep track of all the facts that we know about the current state of the machine. For

each assembly instruction, we encounter its specification in terms of the primitives of riscv-coq,

and for each primitive, we have a helper lemma that updates our symbolic state. At the point

where we reach the call to the Bedrock2-generated code, we apply the correctness lemma for the

compiled trap handler. After that call, we step through more handwritten assembly instructions

that restore the registers and then call the Mret instruction that jumps back to one instruction past

the multiplication instruction that caused the exception. At that point, we need to prove that the

symbolic state accumulated in the Coq proof context implies that the two machines are still related

by R, which only works if there are no bugs in the handler code.

10.7 What If . . .

To explain our specification from a different angle, we list a few potential bugs that an implementer

could introduce, and we show how they make our specification unprovable. Note that these are

not bugs that actually occurred in our own implementation. For those, we refer to section 10.8.2.

To present each potential bug, we ask: What if . . .

179

• . . . the compiler used to compile the handler emitted a multiplication instruction, which

would cause the handler to trigger itself recursively infinitely many times? When proving

correctness of the handwritten assembly (section 10.6), when we get to the jump instruc-

tion that calls the code emitted by the Bedrock2 compiler, we need to apply the compiler-

correctness theorem (instantiated with the Bedrock2 part of our handler), but that theorem

talks about execution on a machine with multiplication support, whereas the theorem we

are about to prove is about execution on a machine without multiplication support. To make

the proof work, we need to introduce box ➃ and steps ➇ and ➈ in Figure 10.1 as explained in

section 10.5, which at some point requires us to go through the concrete list of instructions

emitted by the compiler and to check that none of them is a multiplication instruction.

• . . . the handler runs at a time when no stack exists or the stack does not have enough remain-

ing space? The output of the Bedrock2 compiler contains a number that indicates the amount

of stack space that the compiled code needs, and one hypothesis of the compiler-correctness

theorem is that at least that much space is available below the current stack pointer. In order

to make sure this hypothesis holds, our trap handler uses a separate reserved scratch pad in

memory as its stack, and when the correctness theorem for the handwritten assembly ap-

plies the instantiated compiler-correctness theorem mul-correct, it has to prove that there

are at least 128 bytes of space remaining in the scratch pad, as mandated by the hypothesis

on line 13 in Figure 10.6.

• . . . the assembly that calls compiled Bedrock2 code makes wrong assumptions about the call-

ing conventions of the compiler, e.g. which registers are used to pass arguments, or whether

they are passed on the stack, in which direction the stack grows, or which registers are caller-

saved? All these conventions are also captured in the intermediate lemma mul-correct in

Figure 10.6.

• . . . the handler forgot to increase MEPC, the CSR storing the address to which the machine

jumps when we return from the exception handler, which would cause the faulting multi-

plication instruction to be run again and trigger the handler again? At the end of the han-

dler correctness proof, this bug would lead to a mismatch between the state of the machine

with multiplication support (whose program counter gets advanced past the multiplication

instruction) and the state of the machine without multiplication support (whose program

counter would still point to the multiplication instruction).

• . . .we ran a user program using compressed instructions (2-byte instructions) on our system?

The riscv-coq specification only supports the uncompressed instruction format, where all

instructions are 4 bytes long. There is no single location where the spec explicitly says

180

“compressed instructions are not supported” – it requires an attentive readerwho notices that

the whole spec never mentions compressed instructions. In this scenario, our trap handler

would fail to decode the unsupported instruction, and arbitrary behavior would occur. If

riscv-coq did support compressed instructions, and our handler correctly decoded them, that

would still require it to decide correctly whether to increase the MEPC by 2 or 4, and like in

the previous point, one would notice the mismatch during the proof.

10.8 Evaluation

We attempt to answer the following evaluation questions (and dedicate one subsection to each of

them):

1. Does our verified trap handler run on a RISC-V system implemented by a third party?

2. Did our implementation contain bugs that our verification caught?

3. Did our implementation contain bugs that our verification failed to catch?

4. Was the effort required for verification lower than the effort for debugging would have been?

10.8.1 Running Our Handler

To validate that our verified handler actually runs on a system not implemented by ourselves, we

first looked for small embedded RISC-V processors without multiplication support but could not

find any product with enough documentation in English to make us want to try it out. Instead, we

chose to test our code in the Spike
4
RISC-V ISA simulator, which offers fine-grained control over

which RISC-V extensions are enabled.

We want to test that our handler behaves as expected on a system that runs a simple C program

with multiplications, compiled by a third-party compiler. We wrote a simple program which com-

putes the factorial of a hardcoded number and saves the result as well as a “done” flag to memory.

We compiled it using the GNU RISC-V toolchain.

Our top-level theorem applies to a list of bytes called softmul-binary (mentioned in Figure 10.2

in the definition of the relation R), representing a piece of position-independent RISC-V machine

code. However, Spike expects as input an ELF file. We relied on the GNU RISC-V toolchain to

transform our binary into an ELF file, using a custom 25-line linker script.

For our theorem to be applicable, the conditions that the relation R (Figure 10.2) imposes on r2

(the machine without support for multiplication) must hold on our Spike machine. The first six

4
https://github.com/riscv-software-src/riscv-isa-sim

181

https://github.com/riscv-software-src/riscv-isa-sim

conditions above the exists are related to the formalization and do not require any special setup

action. The two lines below the exists require that the MTVecBase and MScratch CSRs have suitable

values, which we ensure by running an assembly script at the beginning that initializes these two

CSRs with addresses defined in our linker script. The last three lines are a bullet-point separation-

logic clause list describing thememory, saying that it must contain all of the specificationmachine’s

memory r1.(mem), as well as 256 bytes of scratch memory at the address in the MScratch CSR

and the softmul-binary at the address in the MTVecBase CSR. Our linker script, together with the

memory-layout command-line argument we pass to Spike, ensures that these conditions hold.

Spike comes with its own small language of debugger commands, and we used it to run the

system until the done flag in memory is 1, then print the value of the memory at the address

where we expect the result, and we also print the value of the CSR minstret, the number of retired

instructions, to see how many instructions were executed.

No matter whether we invoked Spike with or without multiplication enabled, we observed the

same result for factorial(5), namely 120. With multiplication enabled, the number of instructions

was 87; and with multiplication disabled, the number of instructions increased to 787, which shows

that our handler indeed ran. As an additional sanity check, we also confirmed that it stops working

if we set the MTVecBase CSR to a different value.

Therefore, at least for this one simple example, we can answer question 1 with ‘yes.’

10.8.2 Bugs Caught During Verification

At the end of the proof that steps through the handwritten handler assembly, we need to prove that

the symbolic state accumulated in the Coq proof context implies that the two machines are still

related by R, which only works if there are no bugs in the handler code (see end of section 10.6). At

that point, we found two interesting bugs. The first one was that we forgot to reset the MScratch

CSR, so one invocation of the exception handler works fine, but the next one will use a wrong ad-

dress for its scratch space. The second bugwas the corner case where themultiplication instruction

stores its result into the stack pointer. In that case, we must not override the stack pointer with the

original stack pointer that we swapped into the MScratch register at the beginning of the handler.

We also found two more obvious bugs related to when to set the stack pointer and what stack-

pointer offsets to use.

So we can answer question 2 with ‘yes.’

182

10.8.3 Bugs Encountered While Trying to Run It

We split the development of our experiment into two phases: First, we set up the linker script,

with the trap handler already in place, but inactive, because we enabled the M extension. Once

this experiment produced the expected output, we deactivated theM extension, so that our handler

would run.

Getting phase 1 to work required some debugging. The most difficult part was to understand

how to pass the linker-script-defined address of the heap memory to the C program, and it required

reading the relevant page
5
of the GNU Linker’s manual, which starts by saying that “accessing a

linker script defined variable from source code is not intuitive,” and further down explains that

“when you are using a linker script defined symbol in source code you should always take the

address of the symbol, and never attempt to use its value”.

None of the code involved in phase 1 was verified, so it is not surprising that debugging was

required. And to our delight, in phase 2, as soon as we disabled the M extension, our verified trap

handler worked on the first try, and no debugging was needed at all.

So, to answer question 3, there were bugs in the unverified part, but not in the verified part.

In the future, it would be interesting also to verify ELF file generation, which we believe could

have prevented the above bug.

10.8.4 Effort

For lack of better measures, we resort to lines-of-code counts as a very approximate measure of

effort. Table 10.1 lists the counts of the different components.

It suggests that to produce 76 lines of verified code, a total of 3331 lines of code was necessary,

which is more than a 40× blowup. This ratio looks not very appealing, but it still seems fair to say

that for tricky code, large proofs are sometimes needed. We also have some (potentially alleviating)

remarks for each row of the table:

• The RISC-V helper instance is not referenced by the top-level theorem statement but acts

as a bridge between the RISC-V spec used by the Bedrock2 compiler (whose state does not

contain any CSRs) and the one used in the top-level theorem (whose state does have CSRs).

The helper instance maintains the invariant that no executable instructions are from the M

extension, which is important during the execution of the trap handler, because if the trap

handler contained a multiplication instruction, it would be invoked recursively over and

5
https://sourceware.org/binutils/docs/ld/Source-Code-Reference.html

183

https://sourceware.org/binutils/docs/ld/Source-Code-Reference.html

over again. The helper instance and its accompanying lemmas are mostly copied from the

one used in the compiler, and careful refactoring to share the code with the compiler could

considerably reduce this count, which also means that these lines were low-effort to produce.

• To verify multiplication and a simple instruction decoder in Bedrock2, we used the origi-

nal Bedrock2 program logic [Erbsen et al., 2021], which only automates the application of

weakest-precondition rules but does not provide any automation for side condition solving.

Using a framework that provides more automation would have reduced this proof size.

• A large chunk of the proof lines (1454) is in the correctness proof of the trap-handler parts

written in assembly. The reason for this verbosity might be that, to our knowledge, this

project is the first within the Bedrock2 ecosystem to verify more than two or three lines of

assembly at a time, so there was no assembly-specific framework available. About two thirds

of the proof code could probably be factored out into a framework that would be reusable

for other assembly programs as well. We also did not spend too much time on side-condition

automation, which could further reduce the number of proof lines. We conjecture that in a

more mature assembly-verification framework, the assembly part of the trap-handler proof

might be as short as maybe 100 lines of code. Moreover, the code-to-proof ratio also looks

bad because we count the number of lines of Coq code rather than the number of assembly

instructions, which matters for save_regs3to31 and restore_regs3to31: Each of these is just

a two-line functional program but expands to 29 assembly instructions.

• The compiler compat & invocation code deals with the different RISC-V instances and de-

coders and also applies the Bedrock2 compiler’s correctness theorem for the instruction de-

coder and multiplier implemented in Bedrock2. It consists of important but not particularly

interesting bookkeeping that quickly adds up to many lines of proof.

• Finally, the top-level theorem puts everything together. It requires some helper lemmas that

could probably be generalized andmoved to a library, but the fact that these lemmas were not

already present in any library used in the Bedrock2 ecosystem seems fairly representative of

the general verification experience, so it seems fair to count these lines.

Finding the bugs described in section 10.8.2 through debugging (especially the first two) might

have been quite hard but would probably still not have taken as long as our verification effort took,

so the answer for question 4 is probably a ‘no.’

However, we can imagine a promising world where the proof burden becomes lower than the

debugging burden and verification becomes a part of most systems developers’ toolboxes.

184

impl spec proof total

RISC-V helper instance 0 101 309 410

Multiplication in Bedrock2 8 5 83 96

Instruction decoder in Bedrock2 7 27 80 114

Trap handler in assembly 36 28 1454 1518

Compiler compat & invocation 14 47 716 777

Top-level theorem 11 18 147 176

Excluded (imports & comments) 240

Total 76 226 2789 3331

Table 10.1: Lines-of-code counts, excluding the dependencies (coqutil, riscv-coq, Bedrock2, and the

Bedrock2 compiler)

10.9 Related Work

A number of projects have attempted to verify the interaction between (some or all of) C code, its

compilation, handwritten assembly code, and trap handlers.

In the context of the Verisoft project, Alkassar et al. [2008b] verified a virtual-memory system

that can swap out virtual memory pages onto disk. If an address is accessed that currently is on

disk, a page fault is triggered, and a verified page-fault handler runs. Their correctness statement

says that a physical machine with the page-fault handler can simulate a virtual machine (by which

they mean a machine that provides to a user process a linear memory covering the whole address

space). Their handler is implemented in C0 (a subset of C) with some inline assembly, which is

modeled as external calls that modify additional state that cannot be modified directly from C0.

That is, they call assembly from C, whereas we chose the opposite direction, calling C (or the

C-like language Bedrock2, in our case) from assembly. In their project, saving and restoring of

registers before and after the handler are not implemented in assembly and verified like we do but

are instead part of the semantics of the physical machine.

BabyVMM [Vaynberg and Shao, 2012] proves correctness of a simple virtual memory manager

by showing that for all kernel implementations, linking the kernel with the virtual memory man-

ager and running it on a machine with only physical memory (“hardware model” HW) behaves

like running the kernel on a machine with an address space whose lower part is physical memory

and whose upper part is virtual memory (“address space model” AS). It is implemented in a C-like

language, and no compiler nor assembly code appears in the formalization. Instead, the theorem

185

is stated in terms of C semantics. It also does not mention any page-fault handlers.

The verified microkernel seL4 [Heiser, 2020] is implemented in C, but some small parts are

handwritten assembly and are not verified [Klein et al., 2014, sections 4.4 and 4.8]. Contrary to our

approach of using a verified compiler, they apply translation validation to the binary generated by

GCC and certify using SMT solvers that it behaves like the C program.

CertiKOS [Gu et al., 2014, 2016; Chen et al., 2018] is a verified OS kernel. By means of certified

abstraction layers, it fully captures the behavior of each component in a deep specification, so that

from the outside, it does not matter whether the component is implemented in C or in assem-

bly, thus achieving interoperability at the proof level between C and assembly. Its correctness is

expressed as a contextual refinement, based on CompCert’s [Leroy, 2009a] notion of a backward

simulation, extended with a universal quantification over all possible surrounding programs (con-

texts): It states that for all assembly programs, all behaviors of that assembly program when linked

with the low-level kernel can be simulated by the same program when linked with the high-level

kernel specification. It relies on a notion of linking and uses CompCert’s formalization of assem-

bly, which is still fairly high-level compared to binary machine code, e.g. jumps use labels instead

of offsets or addresses, and there are instructions that allocate and free a stack frame that do not

correspond to any machine instructions. CompCert’s assembly (which is used to model CertiKOS’s

lowest layer) also does not model CSRs, whereas riscv-coq, on which our project is based, does, so

to model trap handlers at our level of detail, the assembly (or machine) model would have to be

extended.

CompCertELF [Wang et al., 2020], a different project by the same group, extends CompCert to

also cover machine-code generation and uses a more realistic memory model, without the stack-

frame allocation/freeing instructions mentioned above. As far as we know, CompCertELF has not

(yet) been integrated with CertiKOS and is not publicly available. If it were, and if we managed to

make CompCertELF compatible with our project, it could have helped to prevent the bug (section

10.8.3) we encountered in our unverified usage of the GNU linker to turn our plain binary into an

ELF file.

Goel et al. [2020] verify a subset of the instructions of an x86 processor which decodes x86

instructions and translates them into micro-operations before executing them. For the more com-

plex instructions, the generated micro-operations contain a trap that causes a jump to microcode

stored in a ROM. Similarly to our theorem, they prove that this processor behaves as if there were

no micro-operations, traps or microcode, and instructions were executed according to a high-level

x86 specification.

The CakeML compiler [Kiam Tan et al., 2019] targets multiple ISAs, and some instructions (e.g.

186

division) are not supported by all of them, so the compiler has to implement some unsupported

instructions in software, but contrary to our work, the necessary in-software implementation is

emitted directly by the compiler, and no trap handler comes into play.

10.10 Conclusion and Future Work

We have shown a pleasantly simple way of specifying the correctness of a trap handler that emu-

lates unsupported instructions in software, and we proved that our implementation of such a trap

handler combining handwritten assembly and compiler-generated code satisfies this specification

by combining symbolic-evaluation proofs about assembly and Bedrock2 programs with the cor-

rectness proof of the Bedrock2 compiler, as well as by proving that the output of the Bedrock2

compiler, which assumes a machine without CSRs and with hardware support for multiplication,

also runs correctly on a machine with CSRs but without hardware support for multiplication.

This style of proof relating multiple execution models constitutes a first step towards the more

ambitious goal of thoroughly proving correctness of a virtual memory system, stated in a similar

flavor by saying that user programs running on a system with virtual memory (implemented by a

combination of hardware, assembly, and C) behave as if they were running on a machine where

the user program can use the full physical address space.

187

188

Chapter 11

Analysis of the Auditing Burden in the Case

Studies

In this chapter, I will try to answer the question whether our foundational end-to-end verification

style has measurable benefits on the auditing burden, that is, whether predicting what a system

does by reading code is easier for systems built using our approach than it is for traditional, unver-

ified systems, or for systems where only individual parts have been verified without composing

the proofs.

There are two key advantages that are expected to make our approach performwell at reducing

the auditing burden:

• All intermediate specifications cancel out, so the top-level theorem does not depend on them,

and they need not be audited.

• The tools used to generate and check the individual components have been proven correct

(e.g. the compiler) or are proof-producing (e.g. the program logic), so their code need not be

audited nor (blindly) trusted. Of course, the exception is Coq’s kernel and the tools used to

compile and run it, but since Coq is an exceptionally general-purpose verification tool, its

auditing burden can be shared among all its many users.

To measure auditing burden, ideally, we would gather data on how much time it takes different

developers to audit the implementations and specifications in question, and how many bugs they

missed. Unfortunately, this kind of user study is beyond the scope of this thesis, so we make the

assumption that the number of lines of code to be read, also known as trusted code base (TCB),

can serve as a measure for auditing burden, even though, as described later, there are many com-

plications that can invalidate this assumption.

189

In the following, we will look at each of the case studies from an auditing point of view (sec-

tion 11.1, section 11.2 and section 11.3), discuss some related work (section 11.4), and conclude

(section 11.5).

11.1 Lightbulb

11.1.1 Auditing the Theorem Statement

The top-level theorem of the lightbulb project (section 8.2.1) can serve as a concise description

of the overall behavior of the system. It provides a guarantee (description of behavior) about

the Kami 4-stage pipelined processor p4mm combined with the encoded RISC-V instructions of

the lightbulb application (instrencode lightbulb_insts). In order to understand and audit that

guarantee, one has to read all other definitions appearing in that statement, that is, bytes_at,

Kami.Semantics.Behavior, KamiRiscv.KamiLabelSeqR, prefix_of and goodHlTrace, and while read-

ing these, one also has to recursively follow all definitions referenced by these, which leads to a

tree of definitions to be read. A summary of this tree is given in Table 11.1a. Each line contains

a definition, or the name of a file in cases where a whole file needs to be read, and its number of

lines of code.

The counts exclude definitions from the Coq standard library such as lists, strings, FMaps,

and numbers, because these definitions are shared by most Coq projects, and the auditing burden

can therefore be shared among them. The counts also exclude definitions from the coqutil word

and map library and very generic, non-hardware-specific definitions from the Kami library about

words, lists, maps, strings and structs. The choice to exclude this extra library code outside Coq’s

standard library might be controversial, but could be justified by saying that in a better future proof

assistant, all these definitions (or similar ones that can be used for the same purposes) would be

found in the proof assistant’s standard library.

Table 11.1a only includes code that is (transitively) referenced by the top-level theorem state-

ment. However, in order to trust that this statement accurately describes the behavior of the sys-

tem, one also needs to trust the pipeline below the Kami hardware description language. It starts

with some Coq code that defines a subset of the Bluespec language, which is then extracted to

OCaml code (so we also need to trust Coq’s OCaml extraction) together with the Coq definition

of the processor, and then pretty-printed to Bluespec by some straightforward but lengthy (967

lines) OCaml code. LOC counts for the files related to this extraction process are given in Ta-

ble 11.1b. The Bluespec code is compiled to Verilog by the Bluespec compiler, and combined with

190

Component LOC

end2end_lightbulb 6

bytes_at 3

kami_mem_contains_bytes 3

get_kamiMemInit 5

kamiMemInit 1

Kami.Syntax 494

Kami.Semantics 470

KamiRiscv.KamiLabelSeqR 8

KamiLabelR 17

RqFromProc, RsToProc 19

prefix_of 2

lightbulb_spec up to goodHlTrace 186

TracePredicate (without stateful) 39

ReversedListNotations 5

Total 1258

(a) LOC counts of the TCB of the lightbulb top-level correctness

statement (excluding libraries)

Component LOC

Kami.Synthesize 115

Kami.Ext.BSyntax 213

Kami.Ext.Extraction 41

Ocaml/Main.ml 37

Ocaml/PP.ml 967

Total 1373

(b) LOC counts for extraction of Kami to

Bluespec

Table 11.1: LOC counts of the TCB of the lightbulb case study

Component LOC

Lightbulb app 176

Bedrock2 compiler 931→ 1628

Kami 4-stage processor implementation 1700

Total 2807→ 3504

Table 11.2: Implementation LOC of lightbulb case study. The numbers on the left of the arrows

refer to the counts from 2020 as we reported in [Erbsen et al., 2021], whereas the numbers on the

right of the arrows refer to the updated compiler as of 2024.

191

some Verilog
1
helper files provided by Bluespec (FIFO2.v, RegFileLoad.v, and SizedFIFO.v), as well

as one hand-written project-specific Verilog file, processor/integration/system.v, spanning 223

lines, that provides memory supporting non-aligned access and also makes the RISC-V program

available. More tools, including yosys and nextpnr, are then used to program the system onto an

FPGA. This whole build process is orchestrated by Makefiles and runs on an operating system, so

there is also some trust needed that these invoke the tools as expected.

11.1.2 Auditing the Implementation

Now, let us imagine that the system did not have any proofs, which means that in order to convince

ourselves that it will behave as expected, we would have to read its implementation. Table 11.2

lists the number of lines that would have to be read.

The numbers for the lightbulb app and the first number for the Bedrock2 compiler are taken

from Table 4 of our original publication about the lightbulb [Erbsen et al., 2021].

Since then, the Bedrock2 compiler has been extended considerably: From a four-phase compiler

(just flattening, a simple register renaming phase, the RISC-V code generation phase and instruc-

tion encoding) to a seven-phase compiler (see Figure 3.3), and we kept building the lightbulb code

with it on our continuous integration server. So, as of now (July 2024), the number of lines in the

compiler implementation has grown to 1628, as the more detailed per-phase listing in Table C.1 in

Appendix C shows.

To get an estimate of the size of the Kami 4-stage pipelined processor implementation, I read

through its code and added up numbers as listed in Table C.2 in Appendix C. The code that ends

up in the Kami processor implementation is spread over many files, and some code that ends up in

the final 4-stage pipelined processor is actually reused from some intermediate refinement steps,

e.g. from a 3-stage pipelined processor, so it is a bit tricky to get an accurate LOC count, so the

1700 LOC reported in Table 11.2 should be viewed as a rough estimate.

11.1.3 Comparison

Having LOC numbers for the definitions leading to the theorem statement as well as for the imple-

mentation, we can now compare them: For instance, one could say that theorem-based auditing

would involve reading 1258 + 1373 = 2631 LOC, whereas reading the implementation requires

reading only 176+1700 = 1876 LOC (excluding the compiler because it is a very generally reusable

1
Note that, confusingly, the .v file extension is used for Coq files as well as for Verilog files.

192

component whose auditing burden can be shared among many projects and therefore does not

need to be counted), so one could conclude that theorem-based auditing is actually worse by a

factor of 1.4. However, one could also say that since the Kami-to-Bluespec extraction is part of

the unverified pipeline, and every verification approach ends at some level, we only count the 1258

lines on which the top-level theorem statement depends, and since the Bedrock2 compiler has been

verified, we would require an implementation auditor to also audit the compiler for a fair compar-

ison, so auditing the implementation would require reading 3504 lines, so we could conclude that

theorem-based auditing is better by a factor of 2.8.

However, there is also another hard-to-measure influence on the auditing burden: Code that

serves as a specification is written with the sole purpose of making it as easy to understand as

possible, whereas implementation code also needs to trade off ease of understanding against effi-

ciency, so the auditing time spent per line of implementation code might be considerably higher

than the auditing time spent per line of specification code.

11.2 Garage Door

Despite the big methodology-dependent variance in the possible results seen for the lightbulb, it

is still interesting to apply the same kind of counting to the garage door project, because there,

we decided to run it on a commercial RISC-V processor, so the bottom-most layer is now RISC-V

instead of the Kami hardware description language.

11.2.1 Auditing the Theorem Statement

Table 11.3 lists LOC counts for the tree of definitions that one needs to read to audit the top-level

theorem statement. The LOC count for the run1 function of our RISC-V specification is not split up

further because it comes from Table 4 of our publication about the lightbulb [Erbsen et al., 2021].

11.2.2 Auditing the Implementation

The size of the implementation can be measured by pretty-printing the Bedrock2 code to C and

counting its lines, as reported in Table 11.4. These numbers do not actually correspond to the num-

ber of lines of code that we manually wrote as part of that project, because most code is generated

either by Rupicola or by fiat-crypto. But the goal here is to estimate the LOC of a hypothetical,

unverified system that does not use our tools, and the pretty-printed generated C code looks, in

terms of code size, similar to what one would write manually in a traditional, unverified system.

193

Component LOC

garagedoor_correct 2

always 6

eventually 9

initial-conditions 10

regs_initialized 2

valid_machine 3

imem 4

ptsto_bytes 1

array 8

ptsto 1

mem_available 4

ex1 1

emp 1

sep 2

MemoryLayout ml 8

Record RiscvMachine 10

run1 (RISC-V semantics) 2053

io_spec 1

only_mmio_satisfying 2

mmio_trace_abstraction_relation 7

boot_seq 1

BootSeq 4

OP 1

iocfg 4

LAN9250/SPI parts in lightbulb_spec 140

protocol-spec 1

labeled_transitions 1

protocol-step 50

garageowner_P 9

garageowner 2

RupicolaCrypto.Spec.chacha20_block 30

IPChecksum.Spec.ip_checksum 6

x25519_spec 1

Crypto.Spec.Curve25519.M 21

Crypto.Spec.MontgomeryCurve 69

Crypto.Spec.ModularArithmetic.F 72

TracePredicate 48

Total 2595

Table 11.3: LOC counts of the TCB of the garage door top-

level correctness statement (excluding libraries)

Kind of code LOC

Handwritten 414

Generated by Rupicola 202

Generated by fiat-crypto 1852

Total 2468

Table 11.4: LOC counts of the

garage door implementation

194

11.2.3 Comparison

If we do not count the implementation of the Bedrock2 compiler (arguing that compilers are very

reusable), comparing the totals of Table 11.3 and Table 11.4, one might get the impression that

theorem-based auditing is worse by a factor of 1.05, or if we include the 1628 LOC of the Bedrock2

compiler in the implementation, one could say that theorem-based auditing is better by a factor

of 1.6. However, auditing the correctness of expert-written, highly optimized elliptic-curve code

that is comparable in performance to the one created by fiat-crypto is really hard, so comparing

implementation lines to specification lines 1:1 is not meaningful here. So, while I am happy to have

computed some numbers, I do not believe that they carry any particularly valuable information.

11.3 Softmul

Gathering meaningful numbers on the auditing burden for the softmul trap handler seems even

harder. The top-level theorem statement (section 10.3) and its dependencies are quite concise,

except that they reference the RISC-V specification, which is quite long: 2053 LOC according to

the count we did for the lightbulb project, but this count excludes the CSR-related code. Com-

pared to this number, the LOC count of the implementation, as shown in Table 10.1, is tiny: The

trap handler implementation consists of 8 lines of Bedrock2 code for the multiplication, 7 lines of

Bedrock2 code for the instruction decoder, and 36 lines of assembly, resulting in a total of 51 lines

of implementation.

But the interesting part that an auditor of the implementation would have to look at is not

primarily in these 51 lines of implementation, but in the assumptions that this implementation im-

plicitly makes about its environment, and to determine whether these assumptions hold, an auditor

would have to read the RISC-V PDF specification, and probably also some compiler documentation

and processor documentation, think really hard, and also perform lots of testing. Quantifying this

effort with concrete numbers seems far out of scope for this thesis.

11.4 Related Work: Parfait

It is interesting to compare the numbers gathered in this chapter to numbers reported for the Parfait

project (built on top of Knox [Athalye et al., 2022]), because they report numbers [Athalye, 2024]

which, at first sight, look orders of magnitude better than ours: Their implementation consists of

2300 lines of software and 13500 lines of hardware (Verilog), i.e. 15800 LOC in total, while their

195

specification is only 40 LOC. If one did the same kind of division on these numbers as we did in

the previous sections, it would seem that theorem-based auditing is better by a factor of almost

400 for their system, which would mean that their results are more than two orders of magnitude

better than ours. Additionally, they prove not only functional correctness like we do, but also an

information-preserving refinement, that is, they prove that the implementation does not leak more

information than the specification.

So where does this big difference come from? On one hand, their statement depends on some

more code than just the 40 LOC describing the specification-level system, namely also the code of

the driver that turns the implementation-level interface into a specification-level interface and their

Coq statement of what (information-preserving) refinement is. But, more importantly, they use a

number of different verification tools (including F
★
and Rosette, both of which rely on the Z3 SMT

solver, as well as KaRaMeL to compile Low
★
to C, and CompCert), and they have no automated

way of verifying that these tools are compatible with each other: For instance, CompCert specifies

RISC-V assembly semantics in Coq, but they also need assembly semantics in Rosette, so they hand-

translated them into Rosette. A mistake there could lead to a missed bug, so in order to achieve

the same level of assurance that our approach provides, one would also have to audit all language

formalizations appearing in all used tools, as well as the code of the various verification tools

themselves, the sum of which could easily dwarf the total implementation LOC of their system.

11.5 Conclusion

We have seen in this chapter that it is possible to gather LOC counts for the amount of code that

needs to be audited in the theorem-based auditing approach and compare them to the number of

LOC that need to be read in a traditional implementation-based auditing approach, and, depending

on how one counts and on what the bottom-most specification is, the theorem-based auditing

approach can be better by a factor of up to 2.8.

As we saw, the choice of how far down in the stack to end the verification affects the auditing

burden, because different layers have different specification sizes. In particular, RISC-V tends to

take more LOC to specify than the Kami hardware description language. In future work, it would

be interesting to extend the verification pipeline further down. For instance, going all the way

down to netlists might lead to an even smaller TCB, because the semantics of netlists should be

quite simple.

196

No verification Non-foundational Foundational

Implementation ✗

Basic trust in build system & env ✗ ✗ ✗

Top-level application spec ✗ ✗

Spec of bottom-most layer ✗ ✗

Small proof-checking kernel ✗

Compiler for the proof-checking kernel ✗

Translations of intermediate specs ✗

Layer-specific verification tools ✗

SMT solver ✗

Compiler(s) for the implementation ✗

Compiler(s) for all verification tools ✗

Table 11.5: Comparison of components in the TCB in different approaches. Generally, fewer ✗ is

better, but one also needs to consider that certain components (e.g. specs or a small proof-checking

kernel) require considerably less trust than others (e.g. the implementation of the code under study

or verification tools).

However, we also saw that in this number-gathering process, one has to make many quite

arbitrary decisions and encounters problems that are hard to account for:

• It is hard to decide which lines should be counted, especially given that different pieces of

code have different potential for reusability and thus for sharing of auditing burden.

• It is hard to account for the fact that specification code is optimized for reading, while imple-

mentation code also needs to optimize for execution speed, and that therefore, specification

code reading tends to be less work per LOC than implementation code reading.

• It is unclear how reliable code reading is, both for implementation code and specification

code, i.e. we do not have directly usable data on how many bugs one would miss when

reading code, and whether this missed-bug rate differs between specification code and im-

plementation code.

Because of these limitations, I do not believe that the numbers obtained here are particularly mean-

ingful, but, at least, I am happy to have gone through the exercise of trying to produce some num-

bers about the auditing burden.

On the other hand, in a qualitative analysis of the trusted code base (Table 11.5), our founda-

tional approach (last column) looks much more favorable: Even though, compared to an approach

without any verification (first column), it has more components in its TCB, they are of a different

197

nature that is easier to audit, because they were written with trustworthiness in mind rather than

optimal performance.
2

And compared to other verification projects that combine many layer-specific verification tools

in a non-foundational way (middle column), we can see that there are many components with po-

tentially intricate implementations that need to be trusted in that approach, but not in our foun-

dational approach.

2
The Coq proof-checking kernel, however, does contain performance-optimized code.

198

Part III

Conclusion

199

Chapter 12

Conclusion

Exercising the different techniques Let us see how the different techniques and building blocks

presented in Part I have been useful in the three case studies presented in Part II:

• Omnisemantics (chapter 2) are the main form of language semantics used in all three case

studies, and served us well in all of them. They enable use of forward simulations in the

compiler in the presence of nondeterminism as well as a unified treatment of external non-

determinism (nondeterminism that gets recorded in the event trace, such as input) and in-

ternal nondeterminism (nondeterminism that does not get recorded in the trace, such as the

addresses chosen for memory allocation). The type signature and meaning of omniseman-

tics judgments is the same as for WP judgments, so omnisemantics combine smoothly with

WP-based program logics. There are only two places in the three case studies where omnise-

mantics were not used: In the semantics of the intermediate languages of Fiat Cryptography,

because there, determinism is important and termination is obvious, so interpreters are the

more natural choice for semantics there, and in the semantics of the Kami hardware de-

scription language, which uses a combination of traditional big-step operational semantics

(to describe individual state transitions) and small-step operational semantics (to compose

processor cycles), because Kami was designed before we started using omnisemantics. The

end-to-end theorem of the lightbulb is expressed in terms of Kami’s traditional semantics,

whichmakes it more palatable and trustworthy for people who have not used omnisemantics

before, while the two other case studies, which were published later, at a time when omnise-

mantics already seemed more accepted, use omnisemantics in their top-level statements.

• The Bedrock2 compiler (chapter 3) is used in all three case studies, and its stack allocation

feature is used both in the lightbulb and in the garage door. The compiler can deal with hand-

201

written input programs as well as with input programs generated by higher-level compilers

such as the Fiat-Crypto-to-Bedrock2 compiler or the Rupicola compiler, and the correctness

theorems of its input programs (no matter whether hand-written or generated by higher-

level compilers) compose with the Bedrock2 compiler correctness theorem in such a way

that the semantics of the Bedrock2 language cancel out.

• The riscv-coq ISA specification (chapter 4) is also used in all three case studies. In the light-

bulb, it has been exercised both from above (by proving the compiler against it) and from

below (by proving the Kami processor against it) and thus cancels out in the end-to-end theo-

rem. In contrast, the garage door opener runs on a commercial RISC-V processor that was not

formally verified in Coq, so there, the riscv-coq ISA specification serves as the bottom-most

specification layer in the stack and thus is part of the trusted code base of the end-to-end

theorem. And finally, in the softmul case study, the riscv-coq ISA specification shows up

both in the top-most specification layer (a processor specification where multiplication is

implemented in hardware) and in the bottom-most layer (a processor where multiplication

is implemented via a trap handler).

• The Live Verification techniques described in chapter 5 were used to verify a series of sample

functions (Table 5.2), as well as a bigger development around a map data structure called crit-

bit tree [Fukala, 2024].

• Automated splitting and merging of separation logic clauses (section 5.4.9) and the expres-

sion simplification techniques in chapter 6 are used extensively by the Live Verification

framework.

As we can see, the techniques described in chapter 5, section 5.4.9, and chapter 6 have not

yet been used in a bigger case study that combines several different verified components like the

case studies in Part II do. However, the per-function correctness theorems that are proven with the

Live Verification framework use the exact same semantics as the per-function correctness theorems

produced with the Bedrock2 program logic as used in the three described case studies, so in future

case studies, it should be possible to use Live Verification for program verification at the Bedrock2

source language level.

Outlook And indeed, at the time of writing, there are already two ongoing projects that will build

on top of Live Verification:

The first one aims to develop a verified driver for a DMA-based network interface card (whereas

the lightbulb and garage door case studies perform their I/O word-by-word through an MMIO-

based SPI interface), and the plan is to use Live Verification for the driver functions.

202

The second project, called Fiat2, aims to create a high-level application programming language

on top of Bedrock2 that can express business logic typically occurring in webapps as well as

database queries within the same language, to allow for optimizations across the two. The lan-

guage is simple and high-level enough that it can serve as the specification of a system’s behavior,

and human insight needed to optimize performance will be encoded as separate annotations that

do not need to be read when auditing the code to understand the system’s behavior. Compiling

Fiat2 to Bedrock2 will require (among others) a map data structure, and it is planned to use the

crit-bit tree structure developed in Live Verification there.

The work done in this thesis is just a small part in the bigger agenda of developing techniques

and case studies to demonstrate that it is possible to build reliable systems whose behavior is easy

to understand and which can be optimized without risking to change their behavior because each

optimization comes with a proof that the behavior still corresponds to the behavior as specified by

the high-level source program.

So, even though the amount of time spent and the amount of work published at this point

might suggest that my PhD could and should come to an end here, the research started in this

thesis should not come to an end, as there are still several ongoing projects and potential future

projects based on this thesis’ work that I would like to see happen and would like to help make

happen.

203

204

Part IV

Appendix

205

Appendix A

Coq Code for Composing Simulations

Definition simulation{State1 State2: Type}
(exec1: State1 → State1 → Prop)(exec2: State2 → State2 → Prop)
(related: State1 → State2 → Prop): Prop :=
forall s1 s2 s2', related s1 s2 → exec2 s2 s2' →

exists s1', related s1' s2' ∧ exec1 s1 s1'.

Definition compose_relation{State1 State2 State3: Type}
(R12: State1 → State2 → Prop)(R23: State2 → State3 → Prop):
State1 → State3 → Prop := fun s1 s3 ⇒ exists s2, R12 s1 s2 ∧ R23 s2 s3.

Lemma compose_sim{State1 State2 State3: Type}
{R12: State1 → State2 → Prop}{R23: State2 → State3 → Prop}
{exec1: State1 → State1 → Prop}
{exec2: State2 → State2 → Prop}
{exec3: State3 → State3 → Prop}:
simulation exec1 exec2 R12 →
simulation exec2 exec3 R23 →
simulation exec1 exec3 (compose_relation R12 R23).

Proof.
unfold simulation, compose_relation in *.
intros S12 S23 s1 s3 s3' (s2 & HR12 & HR23) E3.
specialize S23 with (1 := HR23) (2 := E3).
destruct S23 as (s2' & HR23' & E2).
specialize S12 with (1 := HR12) (2 := E2).
destruct S12 as (s1' & HR12' & E1).
eauto.

Qed.

Figure A.1: Standalone backward simulation composition proof in Coq

207

Definition simulation{State1 State2: Type}
(exec1: State1 → (State1 → Prop) → Prop)
(exec2: State2 → (State2 → Prop) → Prop)
(related: State1 → State2 → Prop): Prop :=

forall s1 s2 post1,
related s1 s2 →
exec1 s1 post1 →
exec2 s2 (fun s2' ⇒ exists s1', related s1' s2' ∧ post1 s1').

Definition compose_relation{State1 State2 State3: Type}
(R12: State1 → State2 → Prop)(R23: State2 → State3 → Prop):
State1 → State3 → Prop := fun s1 s3 ⇒ exists s2, R12 s1 s2 ∧ R23 s2 s3.

Require Import Coq.Logic.PropExtensionality.
Require Import Coq.Logic.FunctionalExtensionality.

Lemma compose_sim{State1 State2 State3: Type}
{exec1: State1 → (State1 → Prop) → Prop}
{exec2: State2 → (State2 → Prop) → Prop}
{exec3: State3 → (State3 → Prop) → Prop}
{R12: State1 → State2 → Prop}
{R23: State2 → State3 → Prop}:

simulation exec1 exec2 R12 →
simulation exec2 exec3 R23 →
simulation exec1 exec3 (compose_relation R12 R23).

Proof.
unfold simulation, compose_relation in *.
intros S12 S23 s1 s3 post1 (s2 & HR12 & HR23) E1.
specialize S12 with (1 := HR12) (2 := E1).
specialize S23 with (1 := HR23) (2 := S12).
simpl in S23.
match goal with
| H: exec3 s3 ?P |- exec3 s3 ?Q ⇒ replace Q with P; [exact H|]
end.
extensionality s2'.
apply propositional-extensionality.
firstorder idtac.

Qed.

Figure A.2: Standalone omnisemantics simulation composition proof in Coq

208

Require Import Coq.Strings.String.
Require Import Coq.Lists.List.

Section WithParams.
Context {mem: Type} {word: Type} {trace: Type}.

Definition CallSpec(Program: Type): Type :=
forall (p: Program) (funcname: string)

(t: trace) (m: mem) (argvals: list word)
(post: trace → mem → list word → Prop), Prop.

Definition phase_correct{P1 P2: Type}
(call1: CallSpec P1)(call2: CallSpec P2)
(compile: P1 → option P2): Prop :=
forall p1 p2,
compile p1 = Some p2 →
forall fname t m argvals post,
call1 p1 fname t m argvals post →
call2 p2 fname t m argvals post.

Definition compose_phases{P1 P2 P3: Type}
(phase12: P1 → option P2)(phase23: P2 → option P3):
P1 → option P3 :=
fun p1 ⇒ match phase12 p1 with

| Some p2 ⇒ phase23 p2
| None ⇒ None
end.

Lemma compose_phases_correct{P1 P2 P3: Type}
{call1: CallSpec P1}{call2: CallSpec P2}{call3: CallSpec P3}
{compile12: P1 → option P2}{compile23: P2 → option P3}:
phase_correct call1 call2 compile12 →
phase_correct call2 call3 compile23 →
phase_correct call1 call3 (compose_phases compile12 compile23).

Proof.
unfold compose_phases, phase_correct. intros Ok12 Ok23 p1 p3 E23 * C1.
destruct (compile12 p1) as [p2|] eqn:E12; [|discriminate].
eapply Ok23. 1: exact E23.
eapply Ok12. 1: exact E12.
exact C1.

Qed.
End WithParams.

Figure A.3: Standalone call spec composition proof in Coq

209

210

Appendix B

Sample Log of Running the step Tactic

Repeatedly

This log was obtained by commenting out the line store(p, res); at the end of bst_add, replacing

/**. by /*?. after the closing brace after the return, and running step. step. step. many times,

where step has been redefined as follows:

Ltac step ::=

assert_no_error;

lazymatch goal with

| |- ?g ⇒ idtac "Goal:"; idtac g; idtac "Step:"

end;

first [step0 Logging.run_logger_thunk

| idtac "No applicable tactic"].

It leads to the following output:

Goal:

(t = t ∧
(\[/[1]] = 0 ∧
<{ * allocator_failed_below 12

* (EX rootp : word, <{ * uintptr rootp p

* (EX sk : tree_skeleton, bst' sk s rootp) }>)

* R }> m4 ∨
\[/[1]] = 1 ∧
<{ * allocator

* (EX rootp : word,

211

<{ * uintptr rootp p

* (EX sk : tree_skeleton, bst' sk (fun x : Z ⇒ x = \[vAdd] ∨ s x) rootp) }>)

* R }> m4))

Step:

purify & zify

Goal:

(t = t ∧
(\[/[1]] = 0 ∧
<{ * allocator_failed_below 12

* (EX rootp : word, <{ * uintptr rootp p

* (EX sk : tree_skeleton, bst' sk s rootp) }>)

* R }> m4 ∨
\[/[1]] = 1 ∧
<{ * allocator

* (EX rootp : word,

<{ * uintptr rootp p

* (EX sk : tree_skeleton, bst' sk (fun x : Z ⇒ x = \[vAdd] ∨ s x) rootp) }>)

* R }> m4))

Step:

step_hook

Goal:

(t = t ∧
(\[/[1]] = 0 ∧
<{ * allocator_failed_below 12

* (EX rootp : word, <{ * uintptr rootp p

* (EX sk : tree_skeleton, bst' sk s rootp) }>)

* R }> m4 ∨
\[/[1]] = 1 ∧
<{ * allocator

* (EX rootp : word,

<{ * uintptr rootp p

* (EX sk : tree_skeleton, bst' sk (fun x : Z ⇒ x = \[vAdd] ∨ s x) rootp) }>)

* R }> m4))

Step:

cleanup_step

Goal:

212

(t = t ∧
(\[/[1]] = 0 ∧
<{ * allocator_failed_below 12

* (EX rootp : word, <{ * uintptr rootp p

* (EX sk : tree_skeleton, bst' sk s rootp) }>)

* R }> m4 ∨
\[/[1]] = 1 ∧
<{ * allocator

* (EX rootp : word,

<{ * uintptr rootp p

* (EX sk : tree_skeleton, bst' sk (fun x : Z ⇒ x = \[vAdd] ∨ s x) rootp) }>)

* R }> m4))

Step:

split

Goal:

(t = t)

Step:

step_hook

Goal:

(\[/[1]] = 0 ∧
<{ * allocator_failed_below 12

* (EX rootp : word, <{ * uintptr rootp p

* (EX sk : tree_skeleton, bst' sk s rootp) }>)

* R }> m4 ∨
\[/[1]] = 1 ∧
<{ * allocator

* (EX rootp : word,

<{ * uintptr rootp p

* (EX sk : tree_skeleton, bst' sk (fun x : Z ⇒ x = \[vAdd] ∨ s x) rootp) }>)

* R }> m4)

Step:

step_hook

Goal:

(\[/[1]] = 1 ∧
<{ * allocator

* (EX rootp : word,

213

<{ * uintptr rootp p

* (EX sk : tree_skeleton, bst' sk (fun x : Z ⇒ x = \[vAdd] ∨ s x) rootp) }>)

* R }> m4)

Step:

split

Goal:

(\[/[1]] = 1)

Step:

zify_goal; xlia zchecker

Goal:

(<{ * allocator

* (EX rootp : word,

<{ * uintptr rootp p

* (EX sk : tree_skeleton, bst' sk (fun x : Z ⇒ x = \[vAdd] ∨ s x) rootp) }>)

* R }> m4)

Step:

heapletwise_step

Goal:

(canceling

[|allocator; EX rootp : word,

<{ * uintptr rootp p

* (EX sk : tree_skeleton,

bst' sk (fun x : Z ⇒ x = \[vAdd] ∨ s x) rootp) }>; R|]

(m6 */ (m8 */ (m9 */ (m2 */ (m1 */ (m0 */ m5)))))) True)

Step:

heapletwise_step

Goal:

(canceling

[|EX rootp : word,

<{ * uintptr rootp p

* (EX sk : tree_skeleton, bst' sk (fun x : Z ⇒ x = \[vAdd] ∨ s x) rootp) }>; R|]

(m6 */ (m8 */ (m9 */ (m1 */ (m0 */ m5))))) True)

Step:

heapletwise_step

Goal:

(canceling

214

[|<{ * uintptr ?x p

* (EX sk : tree_skeleton, bst' sk (fun x : Z ⇒ x = \[vAdd] ∨ s x) ?x) }>; R|]

(m6 */ (m8 */ (m9 */ (m1 */ (m0 */ m5))))) True)

Step:

heapletwise_step

Goal:

(canceling

[|uintptr ?x p; EX sk : tree_skeleton, bst' sk (fun x : Z ⇒ x = \[vAdd] ∨ s x) ?x; R|]

(m6 */ (m8 */ (m9 */ (m1 */ (m0 */ m5))))) True)

Step:

heapletwise_step

Goal:

(canceling [|EX sk : tree_skeleton, bst' sk (fun x : Z ⇒ x = \[vAdd] ∨ s x) /[0]; R|]

(m6 */ (m8 */ (m9 */ (m1 */ m5)))) True)

Step:

heapletwise_step

Goal:

(canceling [|bst' ?x (fun x : Z ⇒ x = \[vAdd] ∨ s x) /[0]; R|]

(m6 */ (m8 */ (m9 */ (m1 */ m5)))) True)

Step:

step_hook

Goal:

(canceling [|bst' Leaf (fun x : Z ⇒ x = \[vAdd] ∨ s x) /[0]; R|]

(m6 */ (m8 */ (m9 */ (m1 */ m5)))) True)

Step:

step_hook

Goal:

(canceling [|emp (/[0] = /[0] ∧ is_empty_set (fun x : Z ⇒ x = \[vAdd] ∨ s x)); R|]

(m6 */ (m8 */ (m9 */ (m1 */ m5)))) True)

Step:

heapletwise_step

Goal:

(/[0] = /[0] ∧ is_empty_set (fun x : Z ⇒ x = \[vAdd] ∨ s x))

Step:

split

Goal:

215

(/[0] = /[0])

Step:

step_hook

Goal:

(is_empty_set (fun x : Z ⇒ x = \[vAdd] ∨ s x))

Step:

No applicable tactic

216

Appendix C

More LOC Counts

Component LOC

composed_compile 9

flatten_functions 125

NameGen 4

StringNameGen 22

useimmediate_functions 55

dce_functions 155

regalloc_functions 453

Spilling up to spill-functions 259

riscvPhase 5

FitsStack up to stack_usage 55

FlatToRiscvDef 219

compile_ext_call 17

instrencode 2

riscv.Utility.Encode up to encode 248

Total 1628

Table C.1: LOC counts of the compiler implementation (excluding specifications and proofs)

217

Component LOC

PrimFifo 123

MemTypes 21

ProcFourStDec up to Definition p4st: 125

Kami.Ex.ProcFourStDec.ProcFDE.fetchDecode 5

Kami.Ex.ProcFDCorrect.fetchICacheDecode 4

Kami.Ex.ProcFCorrect.fetchICache 3

Kami.Ex.ProcFInl.fetchICache 2

Kami.Ex.ProcFetch.fetchICache (file up to this definition) 160

Kami.Ex.ProcFetchDecode.decoder (relevant parts in that file) 250

Kami.Ex.ProcThreeStage up to end of writeback, but without fetchDecode 450

IsaRv32.v 461

Plumbing in various files 100

Total 1704

Table C.2: LOC counts of the Kami 4-stage processor (excluding specifications and proofs)

218

Bibliography

Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H. Schmitt, and Mattias

Ulbrich (Eds.). 2016. Deductive Software Verification – The KeY Book. Lecture Notes in Computer

Science, Vol. 10001. Springer International Publishing, Cham. http://link.springer.com/10.1007/

978-3-319-49812-6

Eyad Alkassar, Mark A. Hillebrand, Steffen Knapp, Rostislav Rusev, and Sergey Tverdyshev. 2007.

Formal Device and Programming Model for a Serial Interface. In Proceedings of 4th International

Verification Workshop in Connection with CADE-21, Bremen, Germany, July 15-16, 2007 (CEUR

Workshop Proceedings, Vol. 259), Bernhard Beckert (Ed.). CEUR-WS.org. http://ceur-ws.org/

Vol-259/paper04.pdf

Eyad Alkassar, Mark A. Hillebrand, Dirk Leinenbach, Norbert W. Schirmer, and Artem Starostin.

2008a. The Verisoft Approach to Systems Verification. In 2nd IFIP Working Conference on Verified

Software: Theories, Tools, and Experiments (VSTTE’08) (LNCS, Vol. 5295), Natarajan Shankar and

Jim Woodcock (Eds.). Springer, 209–224.

Eyad Alkassar, Norbert Schirmer, and Artem Starostin. 2008b. Formal Pervasive Verification of a

Paging Mechanism. In Tools and Algorithms for the Construction and Analysis of Systems, C. R.

Ramakrishnan and Jakob Rehof (Eds.). Springer, Berlin, Heidelberg, 109–123. https://doi.org/

10.1007/978-3-540-78800-3_9

A.W. Appel. 2001. Foundational Proof-Carrying Code. In Proceedings 16th Annual IEEE Symposium

on Logic in Computer Science. 247–256. https://doi.org/10.1109/LICS.2001.932501

Andrew W. Appel, Lennart Beringer, Adam Chlipala, Benjamin C. Pierce, Zhong Shao, Stephanie

Weirich, and Steve Zdancewic. 2017. Position Paper: The Science of Deep Specification. Philo-

sophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375,

2104 (Oct. 2017), 20160331. https://doi.org/10.1098/rsta.2016.0331

Andrew W. Appel and Sandrine Blazy. 2007. Separation Logic for Small-Step Cminor. In Theo-

219

http://link.springer.com/10.1007/978-3-319-49812-6
http://link.springer.com/10.1007/978-3-319-49812-6
http://ceur-ws.org/Vol-259/paper04.pdf
http://ceur-ws.org/Vol-259/paper04.pdf
https://doi.org/10.1007/978-3-540-78800-3_9
https://doi.org/10.1007/978-3-540-78800-3_9
https://doi.org/10.1109/LICS.2001.932501
https://doi.org/10.1098/rsta.2016.0331

rem Proving in Higher Order Logics. Springer, 5–21. https://link.springer.com/chapter/10.1007/

978-3-540-74591-4_3

AndrewW. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah Dodds, Gordon Stew-

art, Sandrine Blazy, and Xavier Leroy. 2014. Program Logics for Certified Compilers. Cambridge

University Press, New York, NY, USA.

Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E. Gray, Robert M.

Norton, Prashanth Mundkur, Mark Wassell, Jon French, Christopher Pulte, Shaked Flur, Ian

Stark, Neel Krishnaswami, and Peter Sewell. 2019. ISA Semantics for ARMv8-A, RISC-V, and

CHERI-MIPS. Proceedings of the ACM on Programming Languages 3, POPL (Jan. 2019), 1–31.

https://doi.org/10.1145/3290384

Anish Athalye. 2024. Formally Verifying Secure and Leakage-Free Systems: From Application Speci-

fication to Circuit-Level Implementation. Ph. D. Dissertation. Massachusetts Institute of Technol-

ogy. https://pdos.csail.mit.edu/papers/aathalye-thesis.pdf

Anish Athalye, M. Frans Kaashoek, and Nickolai Zeldovich. 2022. Verifying Hardware Security

Modules with Information-Preserving Refinement. In 16th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 22). USENIX Association, Carlsbad, CA, 503–519.

https://www.usenix.org/conference/osdi22/presentation/athalye

Ralph-Johan Back. 1980. Semantics of Unbounded Nondeterminism. In Automata, Languages and

Programming (Lecture Notes in Computer Science), Jaco de Bakker and Jan van Leeuwen (Eds.).

Springer, Berlin, Heidelberg, 51–63. https://doi.org/10.1007/3-540-10003-2_59

Mike Barnett. 2009. Initial Commit in the Dafny Repo. https://github.com/dafny-lang/dafny/

commit/b70a417a8cb3040aea90e5c85a0119a178f1de98

Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino. 2006.

Boogie: A Modular Reusable Verifier for Object-Oriented Programs. In Formal Methods for

Components and Objects. Vol. 4111. Springer Berlin Heidelberg, Berlin, Heidelberg, 364–387.

https://doi.org/10.1007/11804192_17

Daniel J. Bernstein. 2006. Crit-Bit Trees. https://cr.yp.to/critbit.html

William R. Bevier, Warren A. Hunt, J. Strother Moore, and William D. Young. 1989. An Approach

to Systems Verification. Journal of Automated Reasoning 5, 4 (Dec. 1989), 411–428. https://doi.

org/10.1007/BF00243131

Karthikeyan Bhargavan, Barry Bond, Antoine Delignat-Lavaud, Cédric Fournet, Chris Hawblitzel,

Catalin Hritcu, Samin Ishtiaq, Markulf Kohlweiss, Rustan Leino, Jay R. Lorch, Kenji Mail-

220

https://link.springer.com/chapter/10.1007/978-3-540-74591-4_3
https://link.springer.com/chapter/10.1007/978-3-540-74591-4_3
https://doi.org/10.1145/3290384
https://pdos.csail.mit.edu/papers/aathalye-thesis.pdf
https://www.usenix.org/conference/osdi22/presentation/athalye
https://doi.org/10.1007/3-540-10003-2_59
https://github.com/dafny-lang/dafny/commit/b70a417a8cb3040aea90e5c85a0119a178f1de98
https://github.com/dafny-lang/dafny/commit/b70a417a8cb3040aea90e5c85a0119a178f1de98
https://doi.org/10.1007/11804192_17
https://cr.yp.to/critbit.html
https://doi.org/10.1007/BF00243131
https://doi.org/10.1007/BF00243131

lard, Jianyang Pan, Bryan Parno, Jonathan Protzenko, Tahina Ramananandro, Ashay Rane,

Aseem Rastogi, Nikhil Swamy, Laure Thompson, Peng Wang, Santiago Zanella Béguelin, and

Jean Karim Zinzindohoue. 2017. Everest: Towards a Verified, Drop-in Replacement of HTTPS.

In 2nd Summit on Advances in Programming Languages, SNAPL 2017, May 7-10, 2017, Asilomar,

CA, USA (LIPIcs, Vol. 71), Benjamin S. Lerner, Rastislav Bodík, and Shriram Krishnamurthi (Eds.).

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 1:1–1:12. https://doi.org/10.4230/LIPIcs.

SNAPL.2017.1

François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei Paskevich. 2015. Let’s Verify

This withWhy3. International Journal on Software Tools for Technology Transfer 17, 6 (Nov. 2015),

709–727. https://doi.org/10.1007/s10009-014-0314-5

Thomas Bourgeat. 2023. Specification and Verification of Sequential Machines in Rule-Based Hard-

ware Languages. Ph. D. Dissertation. MIT. http://adam.chlipala.net/theses/bthom.pdf

Thomas Bourgeat, Ian Clester, Andres Erbsen, Samuel Gruetter, Pratap Singh, Andy Wright, and

Adam Chlipala. 2023. Flexible Instruction-Set Semantics via Abstract Monads (Experience Re-

port). Proceedings of the ACM on Programming Languages 7, ICFP (Aug. 2023), 192:108–192:124.

https://doi.org/10.1145/3607833

Joachim Breitner, Antal Spector-Zabusky, Yao Li, Christine Rizkallah, JohnWiegley, and Stephanie

Weirich. 2018. Ready, Set, Verify! Applying Hs-to-Coq to Real-World Haskell Code (Experience

Report). Proceedings of the ACM on Programming Languages 2, ICFP (July 2018), 89:1–89:16.

https://doi.org/10.1145/3236784

Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and Automatic Gener-

ation of High-Coverage Tests for Complex Systems Programs. In Proceedings of the 8th USENIX

Conference on Operating Systems Design and Implementation (OSDI’08). USENIX Association,

USA, 209–224.

Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and AndrewW. Appel. 2018. VST-

Floyd: A Separation Logic Tool to Verify Correctness of C Programs. Journal of Automated

Reasoning 61, 1-4 (June 2018), 367–422. https://doi.org/10.1007/s10817-018-9457-5

Arthur Charguéraud. 2013. Pretty-Big-Step Semantics. In Proceedings of the 22nd European Con-

ference on Programming Languages and Systems (ESOP’13). Springer-Verlag, Rome, Italy, 41–60.

https://doi.org/10.1007/978-3-642-37036-6_3

Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and Samuel Gruetter. 2023. Omniseman-

221

https://doi.org/10.4230/LIPIcs.SNAPL.2017.1
https://doi.org/10.4230/LIPIcs.SNAPL.2017.1
https://doi.org/10.1007/s10009-014-0314-5
http://adam.chlipala.net/theses/bthom.pdf
https://doi.org/10.1145/3607833
https://doi.org/10.1145/3236784
https://doi.org/10.1007/s10817-018-9457-5
https://doi.org/10.1007/978-3-642-37036-6_3

tics: Smooth Handling of Nondeterminism. ACM Transactions on Programming Languages and

Systems 45, 1 (March 2023), 5:1–5:43. https://doi.org/10.1145/3579834

Dipak L. Chaudhari and Om Damani. 2014. Automated Theorem Prover Assisted Pro-

gram Calculations. In Integrated Formal Methods, Elvira Albert and Emil Sekerinski (Eds.).

Vol. 8739. Springer International Publishing, Cham, 205–220. https://link.springer.com/10.1007/

978-3-319-10181-1_13

Deepak L. Chaudhari and Om P. Damani. 2015. CAPS, A Calculational Assistant for Programming

from Specifications. https://www.cse.iitb.ac.in/~dipakc/CAPS/

Hao Chen, Xiongnan Wu, Zhong Shao, Joshua Lockerman, and Ronghui Gu. 2018. Toward Com-

positional Verification of Interruptible OS Kernels and Device Drivers. Journal of Automated

Reasoning 61, 1 (June 2018), 141–189. https://doi.org/10.1007/s10817-017-9446-0

Adam Chlipala. 2013. The Bedrock Structured Programming System: Combining Generative

Metaprogramming and Hoare Logic in an Extensible Program Verifier. In ICFP. ACM Press, 391.

https://doi.org/10.1145/2500365.2500592

Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman, Adam Chlipala, and Arvind.

2017. Kami: A Platform for High-Level Parametric Hardware Specification and Its Modular

Verification. Proceedings of the ACM on Programming Languages 1, ICFP (Aug. 2017), 1–30.

https://doi.org/10.1145/3110268

Nils Anders Danielsson. 2012. Operational Semantics Using the Partiality Monad. ICFP’12 47, 9

(Sept. 2012), 127–138. https://doi.org/10.1145/2398856.2364546

Matthias Daum, Norbert W. Schirmer, and Mareike Schmidt. 2010. From Operating-System Cor-

rectness to Pervasively Verified Applications. In Proc. IFM. Springer-Verlag, 105–120. https:

//hal.inria.fr/inria-00524575/document

Benjamin Delaware, Clément Pit-Claudel, Jason Gross, and Adam Chlipala. 2015. Fiat: Deductive

Synthesis of Abstract Data Types in a Proof Assistant. In POPL 2015. ACM, New York, NY, USA,

689–700. https://doi.org/10.1145/2676726.2677006

Andres Erbsen, Samuel Gruetter, Joonwon Choi, Clark Wood, and Adam Chlipala. 2021. Integra-

tion Verification across Software and Hardware for a Simple Embedded System. In Proceedings

of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Im-

plementation (PLDI 2021). Association for Computing Machinery, New York, NY, USA, 604–619.

https://doi.org/10.1145/3453483.3454065

Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam Chlipala. 2019. Simple High-

222

https://doi.org/10.1145/3579834
https://link.springer.com/10.1007/978-3-319-10181-1_13
https://link.springer.com/10.1007/978-3-319-10181-1_13
https://www.cse.iitb.ac.in/~dipakc/CAPS/
https://doi.org/10.1007/s10817-017-9446-0
https://doi.org/10.1145/2500365.2500592
https://doi.org/10.1145/3110268
https://doi.org/10.1145/2398856.2364546
https://hal.inria.fr/inria-00524575/document
https://hal.inria.fr/inria-00524575/document
https://doi.org/10.1145/2676726.2677006
https://doi.org/10.1145/3453483.3454065

Level Code for Cryptographic Arithmetic - With Proofs, Without Compromises. In 2019 IEEE

Symposium on Security and Privacy (SP). 1202–1219. https://doi.org/10.1109/SP.2019.00005

Andres Erbsen, Jade Philipoom, Dustin Jamner, Ashley Lin, Samuel Gruetter, Clément Pit-Claudel,

and Adam Chlipala. 2024. Foundational Integration Verification of a Cryptographic Server.

PLDI’24 (June 2024). https://dl.acm.org/doi/10.1145/3656446

Jean-Christophe Filliâtre. 2009. Initial Commit in the Why3 Repo. https://gitlab.inria.fr/why3/

why3/-/commit/44577e849e248adf957b65cfd662721d90fd09cb

Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3 — Where Programs Meet Provers.

In Programming Languages and Systems (Lecture Notes in Computer Science), Matthias Felleisen

and Philippa Gardner (Eds.). Springer, Berlin, Heidelberg, 125–128. https://doi.org/10.1007/

978-3-642-37036-6_8

Nissim Francez, C. A. R. Hoare, Daniel J. Lehmann, and Willem P. De Roever. 1979. Semantics of

Nondeterminism, Concurrency, and Communication. J. Comput. System Sci. 19, 3 (Dec. 1979),

290–308. https://doi.org/10.1016/0022-0000(79)90006-0

Dan Frumin, Léon Gondelman, and Robbert Krebbers. 2019. Semi-Automated Reasoning About

Non-determinism in C Expressions. In Programming Languages and Systems, Luís Caires

(Ed.). Vol. 11423. Springer International Publishing, Cham, 60–87. https://doi.org/10.1007/

978-3-030-17184-1_3

Viktor Fukala. 2024. Formally Verified Low-Level C Implementation of Crit-Bit Trees in a Live Ver-

ification Tool. PLDI’24 Student Research Competition (2024). https://samuelgruetter.net/assets/

CritBit_PLDI24_SRC.pdf

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Automated Random

Testing. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI ’05). Association for Computing Machinery, New York, NY, USA, 213–

223. https://doi.org/10.1145/1065010.1065036

Shilpi Goel, Anna Slobodova, Rob Sumners, and Sol Swords. 2020. Verifying X86 Instruction Im-

plementations. In Proceedings of the 9th ACM SIGPLAN International Conference on Certified Pro-

grams and Proofs (CPP 2020). Association for Computing Machinery, New York, NY, USA, 47–60.

https://doi.org/10.1145/3372885.3373811

Jason Gross, Andres Erbsen, Jade Philipoom, Miraya Poddar-Agrawal, and Adam Chlipala. 2022.

Accelerating Verified-Compiler Development with a Verified Rewriting Engine. In 13th Interna-

223

https://doi.org/10.1109/SP.2019.00005
https://dl.acm.org/doi/10.1145/3656446
https://gitlab.inria.fr/why3/why3/-/commit/44577e849e248adf957b65cfd662721d90fd09cb
https://gitlab.inria.fr/why3/why3/-/commit/44577e849e248adf957b65cfd662721d90fd09cb
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1016/0022-0000(79)90006-0
https://doi.org/10.1007/978-3-030-17184-1_3
https://doi.org/10.1007/978-3-030-17184-1_3
https://samuelgruetter.net/assets/CritBit_PLDI24_SRC.pdf
https://samuelgruetter.net/assets/CritBit_PLDI24_SRC.pdf
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/3372885.3373811

tional Conference on Interactive Theorem Proving (ITP 2022). Schloss Dagstuhl – Leibniz-Zentrum

für Informatik. https://doi.org/10.4230/LIPIcs.ITP.2022.17

Samuel Gruetter. 2017. Improving the Coq Proof Automation Tactics of the Verified Software

Toolchain, Based on a Case Study on Verifying a C Implementation of the AES Encryption Al-

gorithm. Technical Report. MSc thesis, EPFL/Princeton University. https://www.cs.princeton.

edu/research/techreps/TR-999-17

Samuel Gruetter, Thomas Bourgeat, and Adam Chlipala. 2024a. Verifying Software Emulation of

an Unsupported Hardware Instruction. ITP’24 (2024). https://doi.org/10.4230/LIPIcs.ITP.2024.17

Samuel Gruetter, Viktor Fukala, and AdamChlipala. 2024b. Live Verification in an Interactive Proof

Assistant. PLDI’24 (June 2024). https://dl.acm.org/doi/10.1145/3656439

Ronghui Gu, Jeremie Koenig, Tahina Ramananandro, Zhong Shao, Shu-Chun Weng, Haozhong

Zhang, and Yu Guo. 2014. Deep Specifications and Certified Abstraction Layers. Technical Report

Technical Report YALEU/DCS/TR-1500. Yale University.

Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (Newman) Wu, Shu-

ChunWeng, Haozhong Zhang, and Yu Guo. 2015. Deep Specifications and Certified Abstraction

Layers. ACM SIGPLAN Notices POPL’15 (Jan. 2015). https://doi.org/10.1145/2775051.2676975

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Wu, Jieung Kim, Vilhelm Sjöberg, and David

Costanzo. 2016. CertiKOS: An Extensible Architecture for Building Certified Concurrent OS

Kernels. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Imple-

mentation (OSDI’16). USENIX Association, USA, 653–669.

Gernot Heiser. 2020. The seL4 Microkernel – An Introduction. Technical Report. https://sel4.

systems/About/seL4-whitepaper.pdf

Martin Hentschel, Richard Bubel, and Reiner Hähnle. 2014. Symbolic Execution Debugger (SED).

In Runtime Verification, Borzoo Bonakdarpour and Scott A. Smolka (Eds.). Vol. 8734. Springer

International Publishing, Cham, 255–262. http://link.springer.com/10.1007/978-3-319-11164-3_

21

WimH. Hesselink. 2010. Alternating States for Dual Nondeterminism in Imperative Programming.

Theoretical Computer Science 411, 22 (May 2010), 2317–2330. https://doi.org/10.1016/j.tcs.2010.

03.016

C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10 (Oct.

1969), 576–580. https://doi.org/10.1145/363235.363259

224

https://doi.org/10.4230/LIPIcs.ITP.2022.17
https://www.cs.princeton.edu/research/techreps/TR-999-17
https://www.cs.princeton.edu/research/techreps/TR-999-17
https://doi.org/10.4230/LIPIcs.ITP.2024.17
https://dl.acm.org/doi/10.1145/3656439
https://doi.org/10.1145/2775051.2676975
https://sel4.systems/About/seL4-whitepaper.pdf
https://sel4.systems/About/seL4-whitepaper.pdf
http://link.springer.com/10.1007/978-3-319-11164-3_21
http://link.springer.com/10.1007/978-3-319-11164-3_21
https://doi.org/10.1016/j.tcs.2010.03.016
https://doi.org/10.1016/j.tcs.2010.03.016
https://doi.org/10.1145/363235.363259

Warren A. Hunt. 1989. Microprocessor Design Verification. http://www.cs.utexas.edu/users/

boyer/ftp/cli-reports/048.pdf

Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank Piessens.

2011. VeriFast: A Powerful, Sound, Predictable, Fast Verifier for C and Java. In NASA Formal

Methods. Vol. 6617. Springer Berlin Heidelberg, Berlin, Heidelberg, 41–55. http://link.springer.

com/10.1007/978-3-642-20398-5_4

Bart Jacobs, Jan Smans, and Frank Piessens. 2010. A Quick Tour of the VeriFast Program Ver-

ifier. In Programming Languages and Systems, Kazunori Ueda (Ed.). APLAS 2010, Vol. 6461.

Springer Berlin Heidelberg, Berlin, Heidelberg, 304–311. http://link.springer.com/10.1007/

978-3-642-17164-2_21

Hanru Jiang, Hongjin Liang, Siyang Xiao, Junpeng Zha, and Xinyu Feng. 2019. Towards Certi-

fied Separate Compilation for Concurrent Programs. In Proceedings of the 40th ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI 2019). Association for

Computing Machinery, New York, NY, USA, 111–125. https://doi.org/10.1145/3314221.3314595

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer.

2018. Iris from the Ground up: A Modular Foundation for Higher-Order Concurrent Sep-

aration Logic. Journal of Functional Programming 28 (2018), e20. https://doi.org/10.1017/

S0956796818000151

Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony Fox, Scott Owens, and Michael

Norrish. 2019. The Verified CakeML Compiler Backend. Journal of Functional Programming 29

(2019), e2. https://doi.org/10.1017/S0956796818000229

Oleg Kiselyov and Hiromi Ishii. 2015. Freer Monads, More Extensible Effects. In Proceedings of

the 2015 ACM SIGPLAN Symposium on Haskell. ACM, Vancouver BC Canada, 94–105. https:

//doi.org/10.1145/2804302.2804319

Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell, Rafal Kolanski,

and Gernot Heiser. 2014. Comprehensive Formal Verification of an OS Microkernel. ACM Trans-

actions on Computer Systems 32, 1 (Feb. 2014), 2:1–2:70. https://doi.org/10.1145/2560537

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin,

Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Har-

vey Tuch, and Simon Winwood. 2009. seL4: Formal Verification of an OS Kernel. In Proceedings

of the ACM SIGOPS 22nd Symposium on Operating Systems Principles (SOSP ’09). Association for

Computing Machinery, New York, NY, USA, 207–220. https://doi.org/10.1145/1629575.1629596

225

http://www.cs.utexas.edu/users/boyer/ftp/cli-reports/048.pdf
http://www.cs.utexas.edu/users/boyer/ftp/cli-reports/048.pdf
http://link.springer.com/10.1007/978-3-642-20398-5_4
http://link.springer.com/10.1007/978-3-642-20398-5_4
http://link.springer.com/10.1007/978-3-642-17164-2_21
http://link.springer.com/10.1007/978-3-642-17164-2_21
https://doi.org/10.1145/3314221.3314595
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000229
https://doi.org/10.1145/2804302.2804319
https://doi.org/10.1145/2804302.2804319
https://doi.org/10.1145/2560537
https://doi.org/10.1145/1629575.1629596

Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, Wolf Honoré, William Mansky, Ben-

jamin C. Pierce, and Steve Zdancewic. 2019. From C to Interaction Trees: Specifying, Verifying,

and Testing a Networked Server. In Proceedings of the 8th ACM SIGPLAN International Confer-

ence on Certified Programs and Proofs (CPP 2019). Association for ComputingMachinery, Cascais,

Portugal, 234–248. https://doi.org/10.1145/3293880.3294106

Robbert Krebbers. 2015. The C Standard Formalized in Coq. Ph. D. Dissertation. Radboud University,

Nijmegen. https://robbertkrebbers.nl/thesis.html

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive Proofs in Higher-Order Con-

current Separation Logic. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of

Programming Languages (POPL ’17). Association for ComputingMachinery, New York, NY, USA,

205–217. https://doi.org/10.1145/3009837.3009855

Peter Lammich. 2015. The Isabelle Refinement Framework. Kolloquium Programmiersprachen

(2015). https://www.complang.tuwien.ac.at/kps2015/proceedings/KPS_2015_submission_13.

pdf

Peter Lammich. 2017. Refinement to Imperative HOL. Journal of Automated Reasoning 62, 4 (2017),

481–503. https://doi.org/10.1007/s10817-017-9437-1

Adam Langley. 2016. Memcpy (and Friends) with NULL Pointers. https://www.imperialviolet.

org/2016/06/26/nonnull.html

Claire Le Goues, K. Rustan M. Leino, and Michał Moskal. 2011. The Boogie Verification Debugger

(Tool Paper). In Software Engineering and Formal Methods (Lecture Notes in Computer Science),

Gilles Barthe, Alberto Pardo, and Gerardo Schneider (Eds.). Springer, Berlin, Heidelberg, 407–

414. https://doi.org/10.1007/978-3-642-24690-6_28

Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur, Sanjoy Das, David Majnemer, John

Regehr, and Nuno P. Lopes. 2017. Taming Undefined Behavior in LLVM. PLDI’17 52, 6 (June

2017), 633–647. https://doi.org/10.1145/3140587.3062343

K. RustanM. Leino. 2013. Developing Verified Programswith Dafny. In 2013 35th International Con-

ference on Software Engineering (ICSE). 1488–1490. https://doi.org/10.1109/ICSE.2013.6606754

K. Rustan M. Leino. 2017. Accessible Software Verification with Dafny. IEEE Software 34, 6 (Nov.

2017), 94–97. https://doi.org/10.1109/MS.2017.4121212

K. Rustan M. Leino and Valentin Wüstholz. 2014. The Dafny Integrated Development Environ-

ment. In Proceedings 1st Workshop on Formal Integrated Development Environment, Grenoble,

France, April 6, 2014 (Electronic Proceedings in Theoretical Computer Science, Vol. 149), Catherine

226

https://doi.org/10.1145/3293880.3294106
https://robbertkrebbers.nl/thesis.html
https://doi.org/10.1145/3009837.3009855
https://www.complang.tuwien.ac.at/kps2015/proceedings/KPS_2015_submission_13.pdf
https://www.complang.tuwien.ac.at/kps2015/proceedings/KPS_2015_submission_13.pdf
https://doi.org/10.1007/s10817-017-9437-1
https://www.imperialviolet.org/2016/06/26/nonnull.html
https://www.imperialviolet.org/2016/06/26/nonnull.html
https://doi.org/10.1007/978-3-642-24690-6_28
https://doi.org/10.1145/3140587.3062343
https://doi.org/10.1109/ICSE.2013.6606754
https://doi.org/10.1109/MS.2017.4121212

Dubois, Dimitra Giannakopoulou, and Dominique Méry (Eds.). Open Publishing Association,

3–15. https://doi.org/10.4204/EPTCS.149.2

Xavier Leroy. 2009a. Formal Verification of a Realistic Compiler. Commun. ACM 52, 7 (July 2009),

107–115. https://doi.org/10.1145/1538788.1538814

Xavier Leroy. 2009b. A Formally Verified Compiler Back-end. Journal of Automated Reasoning 43,

4 (Dec. 2009), 363–446. https://doi.org/10.1007/s10817-009-9155-4

Xavier Leroy. 2015. Using Coq’s Evaluation Mechanisms in Anger. https://gallium.inria.fr/blog/

coq-eval/

Xavier Leroy, Andrew Appel, Sandrine Blazy, and Gordon Stewart. 2012. The CompCert Memory

Model, Version 2. Report. INRIA. 26 pages. https://hal.inria.fr/hal-00703441

Sheng Liang, Paul Hudak, and Mark Jones. 1995. Monad Transformers and Modular Interpreters.

In In Proceedings of the 22nd ACM Symposium on Principles of Programming Languages.

Andreas Lööw, Ramana Kumar, Yong Kiam Tan, Magnus O. Myreen, Michael Norrish, Oskar Abra-

hamsson, and Anthony Fox. 2019. Verified Compilation on a Verified Processor. In PLDI 2019.

Association for ComputingMachinery, New York, NY, USA, 1041–1053. https://doi.org/10.1145/

3314221.3314622

Nancy Lynch and Frits Vaandrager. 1996. Forward and Backward Simulations: II. Timing-Based

Systems. Information and Computation (1996). https://doi.org/10.1006/inco.1996.0060

William Mansky, Wolf Honoré, and Andrew W. Appel. 2020. Connecting Higher-Order Separa-

tion Logic to a First-Order Outside World. In Programming Languages and Systems (ESOP 2020),

Peter Müller (Ed.). Springer International Publishing, Cham, 428–455. https://doi.org/10.1007/

978-3-030-44914-8_16

Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan Nienhuis, David Chisnall, Robert

N. M. Watson, and Peter Sewell. 2016. Into the Depths of C: Elaborating the de Facto Stan-

dards. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI ’16). Association for Computing Machinery, New York, NY, USA, 1–

15. https://doi.org/10.1145/2908080.2908081

Eric Mullen, Stuart Pernsteiner, James R. Wilcox, Zachary Tatlock, and Dan Grossman. 2018. Œuf:

Minimizing the Coq Extraction TCB. In Proceedings of the 7th ACM SIGPLAN International Con-

ference on Certified Programs and Proofs (CPP 2018). Association for Computing Machinery, New

York, NY, USA, 172–185. https://doi.org/10.1145/3167089

Keiko Nakata and Tarmo Uustalu. 2010. Mixed Induction-Coinduction at Work for Coq. 2nd Work-

227

https://doi.org/10.4204/EPTCS.149.2
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1007/s10817-009-9155-4
https://gallium.inria.fr/blog/coq-eval/
https://gallium.inria.fr/blog/coq-eval/
https://hal.inria.fr/hal-00703441
https://doi.org/10.1145/3314221.3314622
https://doi.org/10.1145/3314221.3314622
https://doi.org/10.1006/inco.1996.0060
https://doi.org/10.1007/978-3-030-44914-8_16
https://doi.org/10.1007/978-3-030-44914-8_16
https://doi.org/10.1145/2908080.2908081
https://doi.org/10.1145/3167089

shop of Coq users, developers, and contributors (2010). http://www.cs.ioc.ee/~keiko/papers/Coq2.

pdf

Charles Gregory Nelson. 1980. Techniques for Program Verification. Ph. D. Dissertation. Stanford

University, Stanford, CA, USA.

Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina Torlak, and Xi Wang. 2019.

Scaling Symbolic Evaluation for Automated Verification of Systems Code with Serval. In Pro-

ceedings of the 27th ACM Symposium on Operating Systems Principles (SOSP ’19). Association for

Computing Machinery, New York, NY, USA, 225–242. https://doi.org/10.1145/3341301.3359641

Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson, James Bornholt, Emina Tor-

lak, and Xi Wang. 2017. Hyperkernel: Push-button Verification of an OS Kernel. In Proceedings

of the 26th Symposium on Operating Systems Principles (SOSP ’17). Association for Computing

Machinery, New York, NY, USA, 252–269. https://doi.org/10.1145/3132747.3132748

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2024. A Proof Assistant for Higher-

Order Logic. https://isabelle.in.tum.de/dist/Isabelle2024/doc/tutorial.pdf

Michael Norrish. 1998. C Formalised in HOL. Technical Report UCAM-CL-TR-453. 156 pages.

Clément Pit-Claudel and Thomas Bourgeat. 2021. An Experience Report onWriting Usable DSLs in

Coq. In CoqPL’21: The Seventh International Workshop on Coq for PL, Assia Mahboubi and Amin

Timany (Eds.). https://pit-claudel.fr/clement/papers/koika-dsls-CoqPL21.pdf

Clément Pit-Claudel, Jade Philipoom, Dustin Jamner, Andres Erbsen, and Adam Chlipala. 2022. Re-

lational Compilation for Performance-Critical Applications: Extensible Proof-Producing Trans-

lation of Functional Models into Low-Level Code. In PLDI 2022. Association for Computing Ma-

chinery, New York, NY, USA, 918–933. https://doi.org/10.1145/3519939.3523706

G. D. Plotkin. 1976. A Powerdomain Construction. Siam J. of Computing (1976).

Shaz Qadeer. 2020. ModelViewer and BVD Projects. https://github.com/boogie-org/boogie/issues/

293

Steven Schäfer, Sigurd Schneider, and Gert Smolka. 2016. Axiomatic Semantics for Compiler Ver-

ification. In Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs.

ACM, St. Petersburg FL USA, 188–196. https://doi.org/10.1145/2854065.2854083

Helgi Sigurbjarnarson, Luke Nelson, Bruno Castro-Karney, James Bornholt, Emina Torlak, and Xi

Wang. 2018. Nickel: A Framework for Design and Verification of Information Flow Control

Systems. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Im-

228

http://www.cs.ioc.ee/~keiko/papers/Coq2.pdf
http://www.cs.ioc.ee/~keiko/papers/Coq2.pdf
https://doi.org/10.1145/3341301.3359641
https://doi.org/10.1145/3132747.3132748
https://isabelle.in.tum.de/dist/Isabelle2024/doc/tutorial.pdf
https://pit-claudel.fr/clement/papers/koika-dsls-CoqPL21.pdf
https://doi.org/10.1145/3519939.3523706
https://github.com/boogie-org/boogie/issues/293
https://github.com/boogie-org/boogie/issues/293
https://doi.org/10.1145/2854065.2854083

plementation (OSDI’18). USENIX Association, USA, 287–305. https://unsat.cs.washington.edu/

papers/sigurbjarnarson-nickel.pdf

Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil Hur.

2020. CompCertM: CompCert with C-assembly Linking and Lightweight Modular Verifica-

tion. Proceedings of the ACM on Programming Languages 4, POPL (Jan. 2020), 1–31. https:

//doi.org/10.1145/3371091

Joseph Tassarotti and Robert Harper. 2019. A Separation Logic for Concurrent Randomized

Programs. Proceedings of the ACM on Programming Languages 3, POPL (Jan. 2019), 1–30.

https://doi.org/10.1145/3290377

Thomas Tuerk. 2010. Local Reasoning about While-Loops. VSTTE 2010 (2010).

Christian Urban. 2019. The Isabelle Cookbook (Draft). https://cflmark.nms.kcl.ac.uk/hg/

isabelle-cookbook/raw-file/883ce9c7b13b/progtutorial.pdf

Alexander Vaynberg and Zhong Shao. 2012. Compositional Verification of a Baby Virtual Memory

Manager. In Certified Programs and Proofs, Chris Hawblitzel and Dale Miller (Eds.). Springer,

Berlin, Heidelberg, 143–159. https://doi.org/10.1007/978-3-642-35308-6_13

Philip Wadler. 1992. The Essence of Functional Programming. In Proceedings of the 19th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’92). Association

for Computing Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/143165.143169

P. Wadler and S. Blott. 1989. How to Make Ad-Hoc Polymorphism Less Ad Hoc. In Proceedings

of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL

’89). Association for ComputingMachinery, New York, NY, USA, 60–76. https://doi.org/10.1145/

75277.75283

Peng Wang, Santiago Cuellar, and Adam Chlipala. 2014. Compiler Verification Meets Cross-

Language Linking via Data Abstraction. In OOPSLA. ACM Press, 675–690. https://doi.org/10.

1145/2660193.2660201

Yuting Wang, Pierre Wilke, and Zhong Shao. 2019. An Abstract Stack Based Approach to Ver-

ified Compositional Compilation to Machine Code. Proceedings of the ACM on Programming

Languages 3, POPL (Jan. 2019), 62:1–62:30. https://doi.org/10.1145/3290375

Yuting Wang, Xiangzhe Xu, Pierre Wilke, and Zhong Shao. 2020. CompCertELF: Verified Separate

Compilation of C Programs into ELF Object Files. Proceedings of the ACM on Programming

Languages 4, OOPSLA (Nov. 2020), 197:1–197:28. https://doi.org/10.1145/3428265

Andrew Waterman and Krste Asanovic (Eds.). 2019. The RISC-V Instruction Set Manual, Volume

229

https://unsat.cs.washington.edu/papers/sigurbjarnarson-nickel.pdf
https://unsat.cs.washington.edu/papers/sigurbjarnarson-nickel.pdf
https://doi.org/10.1145/3371091
https://doi.org/10.1145/3371091
https://doi.org/10.1145/3290377
https://cflmark.nms.kcl.ac.uk/hg/isabelle-cookbook/raw-file/883ce9c7b13b/progtutorial.pdf
https://cflmark.nms.kcl.ac.uk/hg/isabelle-cookbook/raw-file/883ce9c7b13b/progtutorial.pdf
https://doi.org/10.1007/978-3-642-35308-6_13
https://doi.org/10.1145/143165.143169
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/2660193.2660201
https://doi.org/10.1145/2660193.2660201
https://doi.org/10.1145/3290375
https://doi.org/10.1145/3428265

I: User-Level ISA, Document Version 20191213. RISC-V Foundation (Dec. 2019). https://github.

com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf

Andrew Waterman, Krste Asanovic, and John Hauser (Eds.). 2021. The RISC-V Instruction Set

Manual, Volume II: Privileged Architecture, Document Version 20211203. RISC-V Interna-

tional (Dec. 2021). https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/

riscv-privileged-20211203.pdf

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel

Panchekha. 2021. Egg: Fast and Extensible Equality Saturation. Proceedings of the ACM on

Programming Languages 5, POPL (Jan. 2021), 23:1–23:29. https://doi.org/10.1145/3434304

A.K. Wright and M. Felleisen. 1994. A Syntactic Approach to Type Soundness. Information and

Computation 115, 1 (Nov. 1994), 38–94. https://doi.org/10.1006/inco.1994.1093

Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce,

and Steve Zdancewic. 2019. Interaction Trees: Representing Recursive and Impure Programs

in Coq. Proceedings of the ACM on Programming Languages 4, POPL (Dec. 2019), 51:1–51:32.

https://doi.org/10.1145/3371119

Arseniy Zaostrovnykh, Solal Pirelli, Rishabh Iyer, Matteo Rizzo, Luis Pedrosa, Katerina Argyraki,

and George Candea. 2019. Verifying Software Network Functions with No Verification Expertise.

In Proceedings of the 27th ACM Symposium on Operating Systems Principles (SOSP ’19). Associa-

tion for Computing Machinery, New York, NY, USA, 275–290. https://doi.org/10.1145/3341301.

3359647

Hengchu Zhang, Wolf Honoré, Nicolas Koh, Yao Li, Yishuai Li, Li-Yao Xia, Lennart Beringer,

William Mansky, Benjamin Pierce, and Steve Zdancewic. 2021. Verifying an HTTP Key-

Value Server with Interaction Trees and VST. ITP’21 (2021), 19 pages, 770230 bytes. https:

//doi.org/10.4230/LIPICS.ITP.2021.32

230

https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://doi.org/10.1145/3434304
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3341301.3359647
https://doi.org/10.1145/3341301.3359647
https://doi.org/10.4230/LIPICS.ITP.2021.32
https://doi.org/10.4230/LIPICS.ITP.2021.32

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Is it Just as Easy as ``Apply Modus Ponens''?
	1.2 Contributions
	1.2.1 Case Studies in Foundational End-to-End Systems Verification
	1.2.2 Building Blocks
	1.2.3 Techniques

	1.3 Structure of the Dissertation

	I Techniques and Building Blocks
	2 Omnisemantics
	2.1 Undefined Behavior and Nondeterminism
	2.2 Background and Baseline: Big-Step and Small-Step Operational Semantics
	2.2.1 Expressing Undefined Behavior and Nondeterminism

	2.3 Problems Arising When Combining Undefined Behavior and Nondeterminism
	2.3.1 Problem 1: Expressing That Every Execution Safely Terminates in a State Satisfying Some Postcondition
	2.3.2 Problem 2: How to Use Forward Simulations in the Presence of Nondeterminism
	2.3.3 Problem 3: How to Prove Progress & Preservation in One Linear-Size Proof

	2.4 The Big-Step Omnisemantics Judgment
	2.4.1 Relationship to Traditional Semantics
	2.4.2 Solving Problem 1: It Works By Definition
	2.4.3 Solving Problem 2: Omnisemantics Forward Simulations Just Work
	2.4.4 Solving Problem 3: Progress and Preservation in One Go
	2.4.5 Overapproximation of the Set of Results

	2.5 The Small-Step Omnisemantics Judgment
	2.6 All Roads Lead to Omnisemantics
	2.7 Related work

	3 The Bedrock2 Verified Compiler
	3.1 Advantages of the Bedrock2 Compiler
	3.2 The Bedrock2 Source Language
	3.3 Compilation Phases
	3.4 Parameterization over the External-Calls Compiler
	3.5 How (not) to Compose Compiler Phase Correctness Proofs
	3.5.1 Approach 0: No Explicit Concept of Phase Composition
	3.5.2 Approach 1: Chaining Simulations and State Relations
	3.5.3 Approach 2: Per-Language Initial-State and Final-State Predicates
	3.5.4 Approach 3: Per-Language Function-Call Specs
	3.5.5 Conclusion

	4 Formal Semantics For an Industrial ISA
	4.1 Abstracting Over Use Cases
	4.2 Translating Haskell to Coq
	4.3 Typeclass Instances for Interactive Theorem Proving
	4.3.1 Simulator in Coq
	4.3.2 Adding Instruction Counters
	4.3.3 Nondeterminism
	4.3.4 Runtime Input
	4.3.5 Nondeterminism by Means of Weakest Preconditions

	5 Live Verification
	5.1 Introduction
	5.1.1 A First Glance At an Example

	5.2 Background
	5.2.1 Weakest-Precondition Generators
	5.2.2 Forward Symbolic Execution Using a Weakest-Precondition Generator
	5.2.3 Using WP Rules instead of a WP Generator
	5.2.4 Editing Coq Proofs: Proof Goals and the Proof Cursor
	5.2.5 Evars in Coq: Lazily Instantiated Existential Variables
	5.2.6 A Use Case of Evars: Deriving a Definition Based on its Proof

	5.3 Overview: Writing and Compiling a Sample Program
	5.3.1 Guided Tour Through the memset Example
	5.3.2 Tradeoffs Between Three Different Ways of Compiling

	5.4 User Interface
	5.4.1 New Separation-Logic Concepts
	5.4.2 Defining Record Predicates Using C Syntax
	5.4.3 IDE Extensions
	5.4.4 Expressing a Loop Invariant as a Diff from the Current Symbolic State
	5.4.5 Treating While Loops as Tail-Recursive Calls
	5.4.6 Variable-Naming Scheme
	5.4.7 Context Packaging and Merging for if-then-else
	5.4.8 Optimize the User Experience for Failing Proofs Instead of Working Proofs
	5.4.9 Automated Splitting and Merging of Separation Logic Clauses

	5.5 Implementation Notes
	5.5.1 Parsing C in Coq
	5.5.2 Tailored Weakest-Precondition Lemmas
	5.5.3 Extracting Pure Facts From Sep Clauses
	5.5.4 Pattern-Based Selective Warning Suppression
	5.5.5 Mixed Word/Integer Arithmetic Side Conditions
	5.5.6 Undoable, Reusable ification
	5.5.7 On-Demand Addition of Callee-Correctness Hypotheses
	5.5.8 Discussion

	5.6 Evaluation
	5.6.1 Scope of Sample Programs
	5.6.2 Qualitative Discussion of Loop-Invariants-as-Diff Approach
	5.6.3 Some Statistics

	5.7 Related Work
	5.8 Conclusion and Future Work
	5.9 Listing of Notations

	6 Simplification of Expressions Describing Symbolic State
	6.1 Problem
	6.1.1 Going Beyond Rewrite Rules: The Need for Custom Procedures

	6.2 Related Work
	6.3 Attempt 1: Ad-Hoc Rewrites and Simplifications
	6.4 Attempt 2: E-Graphs
	6.5 Current Solution
	6.6 Preliminary Evaluation

	II Case Studies
	7 Overview
	8 IoT Lightbulb
	8.1 Related Work and Concepts
	8.1.1 Verifying Implementations Against a Spec
	8.1.2 Tool Verification
	8.1.3 Integration Verification
	8.1.4 Alternatives to Integration Verification
	8.1.5 Push-Button Integration Verification versus Modularity and Guaranteed Reusability
	8.1.6 Height of the Verified Stack
	8.1.7 Verified Software-Hardware Integration
	8.1.8 Verified Hardware Optimizations
	8.1.9 Contributions

	8.2 Overview
	8.2.1 The End-to-End Theorem
	8.2.2 The Trace Predicate

	8.3 Implementation
	8.3.1 An Infinite Loop Despite Using a Termination-Sensitive Program Logic
	8.3.2 Interfacing Hardware and Software
	8.3.3 Bridging Two Different Styles of Semantics
	8.3.4 I/O Throughout the Stack
	8.3.5 Pipelining and Instruction Memory Consistency

	8.4 Conclusion

	9 The Garage Door: Foundational Integration Verification of a Cryptographic Server
	9.1 The End-to-End Theorem
	9.1.1 Network Protocol Specification
	9.1.2 RISC-V Machine Code for Memory-Mapped I/O and Infinite Loops

	9.2 Different Techniques Combined
	9.3 Evaluation
	9.3.1 Performance
	9.3.2 Effort and Project Size

	10 Softmul: Verifying Software Emulation of an Unsupported Hardware Instruction
	10.1 Introduction
	10.2 Overview
	10.3 The Top-Level Theorem Statement
	10.4 The Handler Code
	10.5 Combining the Program Logic Proofs and Compiler Correctness Proof
	10.6 Correctness Proof of the Assembly Part
	10.7 What If …
	10.8 Evaluation
	10.8.1 Running Our Handler
	10.8.2 Bugs Caught During Verification
	10.8.3 Bugs Encountered While Trying to Run It
	10.8.4 Effort

	10.9 Related Work
	10.10 Conclusion and Future Work

	11 Analysis of the Auditing Burden in the Case Studies
	11.1 Lightbulb
	11.1.1 Auditing the Theorem Statement
	11.1.2 Auditing the Implementation
	11.1.3 Comparison

	11.2 Garage Door
	11.2.1 Auditing the Theorem Statement
	11.2.2 Auditing the Implementation
	11.2.3 Comparison

	11.3 Softmul
	11.4 Related Work: Parfait
	11.5 Conclusion

	III Conclusion
	12 Conclusion

	IV Appendix
	A Coq Code for Composing Simulations
	B Sample Log of Running the step Tactic Repeatedly
	C More LOC Counts
	Bibliography

